1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
//! Lots of helpers for dealing with SWC, particularly from unist.
use micromark::{
mdast::Stop,
unist::{Point, Position},
Location,
};
use swc_common::{BytePos, Span, SyntaxContext, DUMMY_SP};
use swc_ecma_ast::{BinExpr, BinaryOp, Expr, Ident, MemberExpr, MemberProp};
use swc_ecma_visit::{noop_visit_mut_type, VisitMut};
/// Turn a unist position, into an SWC span, of two byte positions.
///
/// > 👉 **Note**: SWC byte positions are offset by one: they are `0` when they
/// > are missing or incremented by `1` when valid.
pub fn position_to_span(position: Option<&Position>) -> Span {
position.map_or(DUMMY_SP, |d| Span {
lo: point_to_bytepos(&d.start),
hi: point_to_bytepos(&d.end),
ctxt: SyntaxContext::empty(),
})
}
/// Turn an SWC span, of two byte positions, into a unist position.
///
/// This assumes the span comes from a fixed tree, or is a dummy.
///
/// > 👉 **Note**: SWC byte positions are offset by one: they are `0` when they
/// > are missing or incremented by `1` when valid.
pub fn span_to_position(span: &Span, location: Option<&Location>) -> Option<Position> {
let lo = span.lo.0 as usize;
let hi = span.hi.0 as usize;
if lo > 0 && hi > 0 {
if let Some(location) = location {
if let Some(start) = location.to_point(lo - 1) {
if let Some(end) = location.to_point(hi - 1) {
return Some(Position { start, end });
}
}
}
}
None
}
/// Turn a unist point into an SWC byte position.
///
/// > 👉 **Note**: SWC byte positions are offset by one: they are `0` when they
/// > are missing or incremented by `1` when valid.
pub fn point_to_bytepos(point: &Point) -> BytePos {
BytePos(point.offset as u32 + 1)
}
/// Turn an SWC byte position into a unist point.
///
/// This assumes the byte position comes from a fixed tree, or is a dummy.
///
/// > 👉 **Note**: SWC byte positions are offset by one: they are `0` when they
/// > are missing or incremented by `1` when valid.
pub fn bytepos_to_point(bytepos: &BytePos, location: Option<&Location>) -> Option<Point> {
let pos = bytepos.0 as usize;
if pos > 0 {
if let Some(location) = location {
return location.to_point(pos - 1);
}
}
None
}
/// Prefix an error message with an optional point.
pub fn prefix_error_with_point(reason: String, point: Option<&Point>) -> String {
if let Some(point) = point {
format!("{}: {}", point_to_string(point), reason)
} else {
reason
}
}
/// Serialize a unist position for humans.
pub fn position_to_string(position: &Position) -> String {
format!(
"{}-{}",
point_to_string(&position.start),
point_to_string(&position.end)
)
}
/// Serialize a unist point for humans.
pub fn point_to_string(point: &Point) -> String {
format!("{}:{}", point.line, point.column)
}
/// Visitor to fix SWC byte positions.
///
/// This assumes the byte position comes from an **unfixed** tree.
///
/// > 👉 **Note**: SWC byte positions are offset by one: they are `0` when they
/// > are missing or incremented by `1` when valid.
#[derive(Debug, Default, Clone)]
pub struct RewriteContext<'a> {
pub prefix_len: usize,
pub stops: &'a [Stop],
pub location: Option<&'a Location>,
}
impl<'a> VisitMut for RewriteContext<'a> {
noop_visit_mut_type!();
// Rewrite spans.
fn visit_mut_span(&mut self, span: &mut Span) {
let mut result = DUMMY_SP;
let lo_rel = span.lo.0 as usize;
let hi_rel = span.hi.0 as usize;
if lo_rel > self.prefix_len && hi_rel > self.prefix_len {
if let Some(lo_abs) =
Location::relative_to_absolute(self.stops, lo_rel - 1 - self.prefix_len)
{
if let Some(hi_abs) =
Location::relative_to_absolute(self.stops, hi_rel - 1 - self.prefix_len)
{
result = Span {
lo: BytePos(lo_abs as u32 + 1),
hi: BytePos(hi_abs as u32 + 1),
ctxt: SyntaxContext::empty(),
};
}
}
}
*span = result;
}
}
/// Generate an ident.
///
/// ```js
/// a
/// ```
pub fn create_ident(sym: &str) -> Ident {
Ident {
sym: sym.into(),
optional: false,
span: DUMMY_SP,
}
}
/// Generate an ident expression.
///
/// ```js
/// a
/// ```
pub fn create_ident_expression(sym: &str) -> Expr {
Expr::Ident(create_ident(sym))
}
/// Generate a binary expression.
///
/// ```js
/// a + b + c
/// a || b
/// ```
pub fn create_binary_expression(mut exprs: Vec<Expr>, op: BinaryOp) -> Expr {
exprs.reverse();
let mut left = None;
while let Some(right_expr) = exprs.pop() {
left = Some(if let Some(left_expr) = left {
Expr::Bin(BinExpr {
left: Box::new(left_expr),
right: Box::new(right_expr),
op,
span: swc_common::DUMMY_SP,
})
} else {
right_expr
});
}
left.expect("expected one or more expressions")
}
/// Generate a member expression.
///
/// ```js
/// a.b
/// a
/// ```
pub fn create_member_expression(name: &str) -> Expr {
let bytes = name.as_bytes();
let mut index = 0;
let mut start = 0;
let mut parts = vec![];
while index < bytes.len() {
if bytes[index] == b'.' {
parts.push(&name[start..index]);
start = index + 1;
}
index += 1;
}
if parts.len() > 1 {
let mut member = MemberExpr {
obj: Box::new(create_ident_expression(parts[0])),
prop: MemberProp::Ident(create_ident(parts[1])),
span: swc_common::DUMMY_SP,
};
let mut index = 2;
while index < parts.len() {
member = MemberExpr {
obj: Box::new(Expr::Member(member)),
prop: MemberProp::Ident(create_ident(parts[1])),
span: swc_common::DUMMY_SP,
};
index += 1;
}
Expr::Member(member)
} else {
create_ident_expression(name)
}
}
|