//! Deal with content in other content.
//!
//! To deal with content in content, *you* (a `micromark-rs` contributor) add
//! information on events.
//! Events are a flat list, but they can be connected to each other by setting
//! `previous` and `next` links.
//! These links:
//!
//! * …must occur on [`Enter`][EventType::Enter] events only
//! * …must occur on void events (they are followed by their corresponding
//! [`Exit`][EventType::Exit] event)
//! * …must have `content_type` field to define the kind of subcontent
//!
//! Links will then be passed through a tokenizer for the corresponding content
//! type by `subtokenize`.
//! The subevents they result in are split up into slots for each linked token
//! and replace those links.
//!
//! Subevents are not immediately subtokenized again because markdown prevents
//! us from doing so due to definitions, which can occur after references, and
//! thus the whole document needs to be parsed up to the level of definitions,
//! before any level that can include references can be parsed.
use crate::content::{string::start as string, text::start as text};
use crate::parser::ParseState;
use crate::tokenizer::{ContentType, Event, EventType, State, StateFn, StateFnResult, Tokenizer};
use crate::util::{edit_map::EditMap, span};
/// Create a link between two [`Event`][]s.
///
/// Arbitrary (void) events can be linked together.
/// This optimizes for the common case where the token at `index` is connected
/// to the previous void token.
pub fn link(events: &mut [Event], index: usize) {
link_to(events, index - 2, index);
}
/// Link two arbitrary [`Event`][]s together.
pub fn link_to(events: &mut [Event], pevious: usize, next: usize) {
assert_eq!(events[pevious].event_type, EventType::Enter);
assert_eq!(events[pevious + 1].event_type, EventType::Exit);
assert_eq!(events[pevious + 1].token_type, events[pevious].token_type);
assert_eq!(events[next].event_type, EventType::Enter);
// Note: the exit of this event may not exist, so don’t check for that.
let link_previous = events[pevious]
.link
.as_mut()
.expect("expected `link` on previous");
let conten_type_previous = link_previous.content_type;
link_previous.next = Some(next);
let link_next = events[next].link.as_mut().expect("expected `link` on next");
link_next.previous = Some(pevious);
assert_eq!(conten_type_previous, link_next.content_type);
}
/// Parse linked events.
///
/// Supposed to be called repeatedly, returns `1: true` when done.
pub fn subtokenize(events: &mut Vec<Event>, parse_state: &ParseState) -> bool {
let mut map = EditMap::new();
let mut done = true;
let mut index = 0;
while index < events.len() {
let event = &events[index];
// Find each first opening chunk.
if let Some(ref link) = event.link {
assert_eq!(event.event_type, EventType::Enter);
// No need to enter linked events again.
if link.previous == None {
// Index into `events` pointing to a chunk.
let mut link_index: Option<usize> = Some(index);
// Subtokenizer.
let mut tokenizer = Tokenizer::new(event.point.clone(), parse_state);
// Substate.
let mut result: StateFnResult = (
State::Fn(Box::new(if link.content_type == ContentType::String {
string
} else {
text
})),
None,
);
// Loop through links to pass them in order to the subtokenizer.
while let Some(index) = link_index {
let enter = &events[index];
let link_curr = enter.link.as_ref().expect("expected link");
assert_eq!(enter.event_type, EventType::Enter);
let span = span::Span {
start_index: enter.point.index,
end_index: events[index + 1].point.index,
};
if link_curr.previous != None {
tokenizer.define_skip(&enter.point);
}
let func: Box<StateFn> = match result.0 {
State::Fn(func) => func,
_ => unreachable!("cannot be ok/nok"),
};
result = tokenizer.push(
span::codes(&parse_state.codes, &span),
func,
link_curr.next == None,
);
assert!(result.1.is_none(), "expected no remainder");
link_index = link_curr.next;
}
// Now, loop through all subevents to figure out which parts
// belong where and fix deep links.
let mut subindex = 0;
let mut link_index = index;
let mut slices = vec![];
let mut slice_start = 0;
while subindex < tokenizer.events.len() {
let subevent = &mut tokenizer.events[subindex];
// Find the first event that starts after the end we’re looking
// for.
if subevent.event_type == EventType::Enter
&& subevent.point.index >= events[link_index + 1].point.index
{
slices.push((link_index, slice_start));
slice_start = subindex;
link_index = events[link_index].link.as_ref().unwrap().next.unwrap();
}
if subevent.link.is_some() {
// Need to call `subtokenize` again.
done = false;
}
// If there is a `next` link in the subevents, we have to change
// its index to account for the shifted events.
// If it points to a next event, we also change the next event’s
// reference back to *this* event.
if let Some(sublink_curr) = &mut subevent.link {
if let Some(next) = sublink_curr.next {
// The `index` in `events` where the current link is,
// minus 2 events (the enter and exit) for each removed
// link.
let shift = link_index - (slices.len() * 2);
sublink_curr.next = sublink_curr.next.map(|next| next + shift);
let next_ev = &mut tokenizer.events[next];
let sublink_next = next_ev.link.as_mut().unwrap();
sublink_next.previous =
sublink_next.previous.map(|previous| previous + shift);
}
}
subindex += 1;
}
slices.push((link_index, slice_start));
// Finally, inject the subevents.
let mut index = slices.len();
while index > 0 {
index -= 1;
map.add(
slices[index].0,
2,
tokenizer.events.split_off(slices[index].1),
);
}
}
}
index += 1;
}
map.consume(events);
done
}