use iced_native::svg;
use std::{
collections::{HashMap, HashSet},
rc::Rc,
};
pub struct Svg {
tree: resvg::usvg::Tree,
}
impl Svg {
pub fn viewport_dimensions(&self) -> (u32, u32) {
let size = self.tree.svg_node().size;
(size.width() as u32, size.height() as u32)
}
}
impl std::fmt::Debug for Svg {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "Svg")
}
}
#[derive(Debug)]
pub struct Cache {
svgs: HashMap<u64, Svg>,
rasterized: HashMap<(u64, u32, u32), Rc<wgpu::BindGroup>>,
svg_hits: HashSet<u64>,
rasterized_hits: HashSet<(u64, u32, u32)>,
}
impl Cache {
pub fn new() -> Self {
Self {
svgs: HashMap::new(),
rasterized: HashMap::new(),
svg_hits: HashSet::new(),
rasterized_hits: HashSet::new(),
}
}
pub fn load(&mut self, handle: &svg::Handle) -> Option<&Svg> {
if self.svgs.contains_key(&handle.id()) {
return self.svgs.get(&handle.id());
}
let opt = resvg::Options::default();
match resvg::usvg::Tree::from_file(handle.path(), &opt.usvg) {
Ok(tree) => {
let _ = self.svgs.insert(handle.id(), Svg { tree });
}
Err(_) => {}
};
self.svgs.get(&handle.id())
}
pub fn upload(
&mut self,
handle: &svg::Handle,
[width, height]: [f32; 2],
scale: f32,
device: &wgpu::Device,
encoder: &mut wgpu::CommandEncoder,
texture_layout: &wgpu::BindGroupLayout,
) -> Option<Rc<wgpu::BindGroup>> {
let id = handle.id();
let (width, height) = (
(scale * width).round() as u32,
(scale * height).round() as u32,
);
// TODO: Optimize!
// We currently rerasterize the SVG when its size changes. This is slow
// as heck. A GPU rasterizer like `pathfinder` may perform better.
// It would be cool to be able to smooth resize the `svg` example.
if let Some(bind_group) = self.rasterized.get(&(id, width, height)) {
let _ = self.svg_hits.insert(id);
let _ = self.rasterized_hits.insert((id, width, height));
return Some(bind_group.clone());
}
match self.load(handle) {
Some(svg) => {
let extent = wgpu::Extent3d {
width,
height,
depth: 1,
};
let texture = device.create_texture(&wgpu::TextureDescriptor {
size: extent,
array_layer_count: 1,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Bgra8UnormSrgb,
usage: wgpu::TextureUsage::COPY_DST
| wgpu::TextureUsage::SAMPLED,
});
let temp_buf = {
let screen_size =
resvg::ScreenSize::new(width, height).unwrap();
let mut canvas = resvg::raqote::DrawTarget::new(
width as i32,
height as i32,
);
resvg::backend_raqote::render_to_canvas(
&svg.tree,
&resvg::Options::default(),
screen_size,
&mut canvas,
);
let slice = canvas.get_data();
device
.create_buffer_mapped(
slice.len(),
wgpu::BufferUsage::COPY_SRC,
)
.fill_from_slice(slice)
};
encoder.copy_buffer_to_texture(
wgpu::BufferCopyView {
buffer: &temp_buf,
offset: 0,
row_pitch: 4 * width as u32,
image_height: height as u32,
},
wgpu::TextureCopyView {
texture: &texture,
array_layer: 0,
mip_level: 0,
origin: wgpu::Origin3d {
x: 0.0,
y: 0.0,
z: 0.0,
},
},
extent,
);
let bind_group =
device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: texture_layout,
bindings: &[wgpu::Binding {
binding: 0,
resource: wgpu::BindingResource::TextureView(
&texture.create_default_view(),
),
}],
});
let bind_group = Rc::new(bind_group);
let _ = self
.rasterized
.insert((id, width, height), bind_group.clone());
let _ = self.svg_hits.insert(id);
let _ = self.rasterized_hits.insert((id, width, height));
Some(bind_group)
}
None => None,
}
}
pub fn trim(&mut self) {
let svg_hits = &self.svg_hits;
let rasterized_hits = &self.rasterized_hits;
self.svgs.retain(|k, _| svg_hits.contains(k));
self.rasterized.retain(|k, _| rasterized_hits.contains(k));
self.svg_hits.clear();
self.rasterized_hits.clear();
}
}