aboutsummaryrefslogblamecommitdiffstats
path: root/book/src/template_expansion.md
blob: cd76d138a9a6b200ed7053c17cba75f2b5f3ff1c (plain) (tree)
1
2
3
4
5
6
7
8
9
10
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485









                                                                            
                                                                           

























































































































































































































































































































































































































































































                                                                                          
# Template Expansion

This chapter will explain how the different parts of the templates are
translated into Rust code.

⚠️ Please note that the generated code might change in the future so the
following examples might not be up-to-date.

## Basic explanations

When you add `#[derive(Template)]` and `#[template(...)]` on your type, the
`Template` derive proc-macro will then generate an implementation of the
`askama::Template` trait which will be a Rust version of the template.

It will also implement the `std::fmt::Display` trait on your type which will
internally call the `askama::Template` trait.

Let's take a small example:

```rust
#[derive(Template)]
#[template(source = "{% set x = 12 %}", ext = "html")]
struct Mine;
```

will generate:

```rust
impl ::askama::Template for YourType {
    fn render_into(
        &self,
        writer: &mut (impl ::std::fmt::Write + ?Sized),
    ) -> ::askama::Result<()> {
        let x = 12;
        ::askama::Result::Ok(())
    }
    const EXTENSION: ::std::option::Option<&'static ::std::primitive::str> = Some(
        "html",
    );
    const SIZE_HINT: ::std::primitive::usize = 0;
    const MIME_TYPE: &'static ::std::primitive::str = "text/html; charset=utf-8";
}

impl ::std::fmt::Display for YourType {
    #[inline]
    fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
        ::askama::Template::render_into(self, f).map_err(|_| ::std::fmt::Error {})
    }
}
```

For simplicity, we will only keep the content of the `askama::Template::render_into`
function from now on.

## Text content

If you have "text content" (for example HTML) in your template:

```html
<h1>{{ title }}</h1>
```

It will generate it like this:

```rust
writer
    .write_fmt(
        format_args!(
            "<h1>{0}</h1>",
            &::askama::MarkupDisplay::new_unsafe(&(self.title), ::askama::Html),
        ),
    )?;
::askama::Result::Ok(())
```

About `MarkupDisplay`: we need to use this type in order to prevent generating
invalid HTML. Let's take an example: if `title` is `"<a>"` and we display it as
is, in the generated HTML, you won't see `<a>` but instead a new HTML element
will be created. To prevent this, we need to escape some characters.

In this example, `<a>` will become `&lt;a&gt;`. And this is why there is the
`safe` builtin filter, in case you want it to be displayed as is.

## Variables

### Variables creation

If you create a variable in your template, it will be created in the generated
Rust code as well. For example:

```jinja
{% set x = 12 %}
{% let y = x + 1 %}
```

will generate:

```rust
let x = 12;
let y = x + 1;
::askama::Result::Ok(())
```

### Variables usage

By default, variables will reference a field from the type on which the `askama::Template`
trait is implemented:

```jinja
{{ y }}
```

This template will expand as follows:

```rust
writer
    .write_fmt(
        format_args!(
            "{0}",
            &::askama::MarkupDisplay::new_unsafe(&(self.y), ::askama::Html),
        ),
    )?;
::askama::Result::Ok(())
```

This is why if the variable is undefined, it won't work with Askama and why
we can't check if a variable is defined or not.

You can still access constants and statics by using paths. Let's say you have in
your Rust code:

```rust
const FOO: u32 = 0;
```

Then you can use them in your template by referring to them with a path:

```jinja
{{ crate::FOO }}{{ super::FOO }}{{ self::FOO }}
```

It will generate:

```rust
writer
    .write_fmt(
        format_args!(
            "{0}{1}{2}",
            &::askama::MarkupDisplay::new_unsafe(&(crate::FOO), ::askama::Html),
            &::askama::MarkupDisplay::new_unsafe(&(super::FOO), ::askama::Html),
            &::askama::MarkupDisplay::new_unsafe(&(self::FOO), ::askama::Html),
        ),
    )?;
::askama::Result::Ok(())
```

(Note: `crate::` is to get an item at the root level of the crate, `super::` is
to get an item in the parent module and `self::` is to get an item in the
current module.)

You can also access items from the type that implements `Template` as well using
as `Self::`, it'll use the same logic.

## Control blocks

### if/else

The generated code can be more complex than expected, as seen with `if`/`else`
conditions:

```jinja
{% if x == "a" %}
gateau
{% else %}
tarte
{% endif %}
```

It will generate:

```rust
if *(&(self.x == "a") as &bool) {
    writer.write_str("gateau")?;
} else {
    writer.write_str("tarte")?;
}
::askama::Result::Ok(())
```

Very much as expected except for the `&(self.x == "a") as &bool`. Now about why
the `as &bool` is needed:

The following syntax `*(&(...) as &bool)` is used to  trigger Rust's automatic
dereferencing, to coerce e.g. `&&&&&bool` to `bool`. First `&(...) as &bool`
coerces e.g. `&&&bool` to `&bool`. Then `*(&bool)` finally dereferences it to
`bool`.

In short, it allows to fallback to a boolean as much as possible, but it also
explains why you can't do:

```jinja
{% set x = "a" %}
{% if x %}
    {{ x }}
{% endif %}
```

Because it fail to compile because:

```console
error[E0605]: non-primitive cast: `&&str` as `&bool`
```

### if let

```jinja
{% if let Some(x) = x %}
    {{ x }}
{% endif %}
```

will generate:

```rust
if let Some(x) = &(self.x) {
    writer
        .write_fmt(
            format_args!(
                "{0}",
                &::askama::MarkupDisplay::new_unsafe(&(x), ::askama::Html),
            ),
        )?;
}
```

### Loops

```html
{% for user in users %}
    {{ user }}
{% endfor %}
```

will generate:

```rust
{
    let _iter = (&self.users).into_iter();
    for (user, _loop_item) in ::askama::helpers::TemplateLoop::new(_iter) {
        writer
            .write_fmt(
                format_args!(
                    "\n    {0}\n",
                    &::askama::MarkupDisplay::new_unsafe(&(user), ::askama::Html),
                ),
            )?;
    }
}
::askama::Result::Ok(())
```

Now let's see what happens if you add an `else` condition:

```jinja
{% for user in x if x.len() > 2 %}
    {{ user }}
{% else %}
    {{ x }}
{% endfor %}
```

Which generates:

```rust
{
    let mut _did_loop = false;
    let _iter = (&self.users).into_iter();
    for (user, _loop_item) in ::askama::helpers::TemplateLoop::new(_iter) {
        _did_loop = true;
        writer
            .write_fmt(
                format_args!(
                    "\n    {0}\n",
                    &::askama::MarkupDisplay::new_unsafe(&(user), ::askama::Html),
                ),
            )?;
    }
    if !_did_loop {
        writer
            .write_fmt(
                format_args!(
                    "\n    {0}\n",
                    &::askama::MarkupDisplay::new_unsafe(
                        &(self.x),
                        ::askama::Html,
                    ),
                ),
            )?;
    }
}
::askama::Result::Ok(())
```

It creates a `_did_loop` variable which will check if we entered the loop. If
we didn't (because the iterator didn't return any value), it will enter the
`else` condition by checking `if !_did_loop {`.

We can extend it even further if we add an `if` condition on our loop:

```jinja
{% for user in users if users.len() > 2 %}
    {{ user }}
{% else %}
    {{ x }}
{% endfor %}
```

which generates:

```rust
{
    let mut _did_loop = false;
    let _iter = (&self.users).into_iter();
    let _iter = _iter.filter(|user| -> bool { self.users.len() > 2 });
    for (user, _loop_item) in ::askama::helpers::TemplateLoop::new(_iter) {
        _did_loop = true;
        writer
            .write_fmt(
                format_args!(
                    "\n    {0}\n",
                    &::askama::MarkupDisplay::new_unsafe(&(user), ::askama::Html),
                ),
            )?;
    }
    if !_did_loop {
        writer
            .write_fmt(
                format_args!(
                    "\n    {0}\n",
                    &::askama::MarkupDisplay::new_unsafe(
                        &(self.x),
                        ::askama::Html,
                    ),
                ),
            )?;
    }
}
::askama::Result::Ok(())
```

It generates an iterator but filters it based on the `if` condition (`users.len() > 2`).
So once again, if the iterator doesn't return any value, we enter the `else`
condition.

Of course, if you only have a `if` and no `else`, the generated code is much
shorter:

```jinja
{% for user in users if users.len() > 2 %}
    {{ user }}
{% endfor %}
```

Which generates:

```rust
{
    let _iter = (&self.users).into_iter();
    let _iter = _iter.filter(|user| -> bool { self.users.len() > 2 });
    for (user, _loop_item) in ::askama::helpers::TemplateLoop::new(_iter) {
        writer
            .write_fmt(
                format_args!(
                    "\n    {0}\n",
                    &::askama::MarkupDisplay::new_unsafe(&(user), ::askama::Html),
                ),
            )?;
    }
}
::askama::Result::Ok(())
```

## Filters

Example of using the `abs` built-in filter:

```jinja
{{ -2|abs }}
```

Which generates:

```rust
writer
    .write_fmt(
        format_args!(
            "{0}",
            &::askama::MarkupDisplay::new_unsafe(
                &(::askama::filters::abs(-2)?),
                ::askama::Html,
            ),
        ),
    )?;
::askama::Result::Ok(())
```

The filter is called with `-2` as first argument. You can add further arguments
to the call like this:

```jinja
{{ "a"|indent(4) }}
```

Which generates:

```rust
writer
    .write_fmt(
        format_args!(
            "{0}",
            &::askama::MarkupDisplay::new_unsafe(
                &(::askama::filters::indent("a", 4)?),
                ::askama::Html,
            ),
        ),
    )?;
::askama::Result::Ok(())
```

No surprise there, `4` is added after `"a"`. Now let's check when we chain the filters:

```jinja
{{ "a"|indent(4)|capitalize }}
```

Which generates:

```rust
writer
    .write_fmt(
        format_args!(
            "{0}",
            &::askama::MarkupDisplay::new_unsafe(
                &(::askama::filters::capitalize(
                    &(::askama::filters::indent("a", 4)?),
                )?),
                ::askama::Html,
            ),
        ),
    )?;
::askama::Result::Ok(())
```

As expected, `capitalize`'s first argument is the value returned by the `indent` call.

## Macros

This code:

```html
{% macro heading(arg) %}
<h1>{{arg}}</h1>
{% endmacro %}

{% call heading("title") %}
```

generates:

```rust
{
    let (arg) = (("title"));
    writer
        .write_fmt(
            format_args!(
                "\n<h1>{0}</h1>\n",
                &::askama::MarkupDisplay::new_unsafe(&(arg), ::askama::Html),
            ),
        )?;
}
::askama::Result::Ok(())
```

As you can see, the macro itself isn't present in the generated code, only its
internal code is generated as well as its arguments.