use super::Context;
use input::TemplateInput;
use parser::{self, Cond, Expr, MatchParameter, MatchVariant, Node, Target, When, WS};
use shared::{filters, path};
use proc_macro2::Span;
use quote::ToTokens;
use std::collections::{HashMap, HashSet};
use std::path::PathBuf;
use std::{cmp, hash, str};
use syn;
pub(crate) fn generate(input: &TemplateInput, contexts: &HashMap<&PathBuf, Context>) -> String {
Generator::new(input, contexts, SetChain::new(), 0).build(&contexts[&input.path])
}
struct Generator<'a> {
// The template input state: original struct AST and attributes
input: &'a TemplateInput<'a>,
// All contexts, keyed by the package-relative template path
contexts: &'a HashMap<&'a PathBuf, Context<'a>>,
// The buffer to generate the code into
buf: String,
// The current level of indentation (in spaces)
indent: u8,
// Whether the output buffer is currently at the start of a line
start: bool,
// Variables accessible directly from the current scope (not redirected to context)
locals: SetChain<'a, &'a str>,
// Suffix whitespace from the previous literal. Will be flushed to the
// output buffer unless suppressed by whitespace suppression on the next
// non-literal.
next_ws: Option<&'a str>,
// Whitespace suppression from the previous non-literal. Will be used to
// determine whether to flush prefix whitespace from the next literal.
skip_ws: bool,
// Counter for askama-internal variable names allocated during code gen
vars: usize,
// If currently in a block, this will contain the name of a potential parent block
super_block: Option<String>,
// If the super macro is used; this determines whether code for the parent block
// is generated or not.
used_super: bool,
}
impl<'a> Generator<'a> {
fn new<'n>(
input: &'n TemplateInput,
contexts: &'n HashMap<&'n PathBuf, Context<'n>>,
locals: SetChain<'n, &'n str>,
indent: u8,
) -> Generator<'n> {
Generator {
input,
contexts,
buf: String::new(),
indent,
start: true,
locals,
next_ws: None,
skip_ws: false,
vars: 0,
super_block: None,
used_super: false,
}
}
fn child(&mut self) -> Generator {
let locals = SetChain::with_parent(&self.locals);
Self::new(self.input, self.contexts, locals, self.indent)
}
// Takes a Context and generates the relevant implementations.
fn build(mut self, ctx: &'a Context) -> String {
let heritage = if !ctx.blocks.is_empty() {
if let Some(parent) = self.input.parent {
self.deref_to_parent(parent);
}
let heritage = Heritage::new(ctx, self.contexts);
self.trait_blocks(&heritage);
Some(heritage)
} else {
None
};
self.impl_template(ctx, &heritage);
self.impl_display();
if cfg!(feature = "iron") {
self.impl_modifier_response();
}
if cfg!(feature = "rocket") {
self.impl_responder();
}
self.buf
}
// Implement `Template` for the given context struct.
fn impl_template(&mut self, ctx: &'a Context, heritage: &Option<Heritage<'a>>) {
self.write_header("::askama::Template", None);
self.writeln(
"fn render_into(&self, writer: &mut ::std::fmt::Write) -> \
::askama::Result<()> {",
);
if let Some(heritage) = heritage {
self.handle(heritage.root, heritage.root.nodes, AstLevel::Top);
} else {
self.handle(ctx, &ctx.nodes, AstLevel::Top);
}
self.flush_ws(WS(false, false));
self.writeln("Ok(())");
self.writeln("}");
self.writeln("}");
}
fn trait_blocks(&mut self, heritage: &Heritage<'a>) {
let trait_name = format!("{}Blocks", self.input.ast.ident);
let mut methods = vec![];
self.write_header(&trait_name, None);
for blocks in heritage.blocks.values() {
for (gen, (ctx, def)) in blocks.iter().enumerate() {
self.used_super = false;
if let Node::BlockDef(ws1, name, nodes, ws2) = def {
let fname = if gen == 0 {
name.to_string()
} else {
format!("{}_g{}", name, gen)
};
self.writeln("#[allow(unused_variables)]");
self.writeln(&format!(
"fn render_block_{}_into(&self, writer: &mut ::std::fmt::Write) \
-> ::askama::Result<()> {{",
fname
));
methods.push(fname);
self.prepare_ws(*ws1);
self.locals.push();
self.super_block = Some(format!("{}_g{}", name, gen + 1));
self.handle(ctx, nodes, AstLevel::Block);
self.super_block = None;
self.locals.pop();
self.flush_ws(*ws2);
self.writeln("Ok(())");
self.writeln("}");
} else {
panic!("only block definitions allowed here");
}
if !self.used_super {
break;
}
}
}
self.writeln("}");
self.writeln(&format!("pub trait {} {{", trait_name));
for name in methods {
self.writeln(&format!(
"fn render_block_{}_into(&self, writer: &mut ::std::fmt::Write) \
-> ::askama::Result<()>;",
name
));
}
self.writeln("}");
}
// Implement `Deref<Parent>` for an inheriting context struct.
fn deref_to_parent(&mut self, parent_type: &syn::Type) {
self.write_header("::std::ops::Deref", None);
self.writeln(&format!(
"type Target = {};",
parent_type.into_token_stream()
));
self.writeln("fn deref(&self) -> &Self::Target {");
self.writeln("&self._parent");
self.writeln("}");
self.writeln("}");
}
// Implement `Display` for the given context struct.
fn impl_display(&mut self) {
self.write_header("::std::fmt::Display", None);
self.writeln("fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {");
self.writeln("self.render_into(f).map_err(|_| ::std::fmt::Error {})");
self.writeln("}");
self.writeln("}");
}
// Implement iron's Modifier<Response> if enabled
fn impl_modifier_response(&mut self) {
self.write_header("::askama::iron::Modifier<::askama::iron::Response>", None);
self.writeln("fn modify(self, res: &mut ::askama::iron::Response) {");
self.writeln("res.body = Some(Box::new(self.render().unwrap().into_bytes()));");
let ext = self.input
.path
.extension()
.map_or("", |s| s.to_str().unwrap_or(""));
match ext {
"html" | "htm" => {
self.writeln("::askama::iron::ContentType::html().0.modify(res);");
}
_ => (),
};
self.writeln("}");
self.writeln("}");
}
// Implement Rocket's `Responder`.
fn impl_responder(&mut self) {
let lifetime = syn::Lifetime::new("'askama", Span::call_site());
let param = syn::GenericParam::Lifetime(syn::LifetimeDef::new(lifetime));
self.write_header("::askama::rocket::Responder<'askama>", Some(vec![param]));
self.writeln(
"fn respond_to(self, _: &::askama::rocket::Request) \
-> ::askama::rocket::Result<'askama> {",
);
let ext = match self.input.path.extension() {
Some(s) => s.to_str().unwrap(),
None => "txt",
};
self.writeln(&format!("::askama::rocket::respond(&self, {:?})", ext));
self.writeln("}");
self.writeln("}");
}
// Writes header for the `impl` for `TraitFromPathName` or `Template`
// for the given context struct.
fn write_header(&mut self, target: &str, params: Option<Vec<syn::GenericParam>>) {
let mut generics = self.input.ast.generics.clone();
if let Some(params) = params {
for param in params {
generics.params.push(param);
}
}
let (_, orig_ty_generics, _) = self.input.ast.generics.split_for_impl();
let (impl_generics, _, where_clause) = generics.split_for_impl();
self.writeln(
format!(
"{} {} for {}{} {{",
quote!(impl#impl_generics),
target,
self.input.ast.ident,
quote!(#orig_ty_generics #where_clause),
).as_ref(),
);
}
/* Helper methods for handling node types */
fn handle(&mut self, ctx: &'a Context, nodes: &'a [Node], level: AstLevel) {
for n in nodes {
match *n {
Node::Lit(lws, val, rws) => {
self.write_lit(lws, val, rws);
}
Node::Comment(ws) => {
self.write_comment(ws);
}
Node::Expr(ws, ref val) => {
self.write_expr(ws, val);
}
Node::LetDecl(ws, ref var) => {
self.write_let_decl(ws, var);
}
Node::Let(ws, ref var, ref val) => {
self.write_let(ws, var, val);
}
Node::Cond(ref conds, ws) => {
self.write_cond(ctx, conds, ws);
}
Node::Match(ws1, ref expr, inter, ref arms, ws2) => {
self.write_match(ctx, ws1, expr, inter, arms, ws2);
}
Node::Loop(ws1, ref var, ref iter, ref body, ws2) => {
self.write_loop(ctx, ws1, var, iter, body, ws2);
}
Node::BlockDef(ws1, name, _, ws2) => {
if let AstLevel::Nested = level {
panic!(
"blocks ('{}') are only allowed at the top level of a template \
or another block",
name
);
}
self.write_block(ws1, name, ws2);
}
Node::Include(ws, path) => {
self.handle_include(ctx, ws, path);
}
Node::Call(ws, scope, name, ref args) => {
self.write_call(ctx, ws, scope, name, args);
}
Node::Macro(_, ref m) => {
if level != AstLevel::Top {
panic!("macro blocks only allowed at the top level");
}
self.flush_ws(m.ws1);
self.prepare_ws(m.ws2);
}
Node::Import(ws, _, _) => {
if level != AstLevel::Top {
panic!("import blocks only allowed at the top level");
}
self.handle_ws(ws);
}
Node::Extends(_) => {
if level != AstLevel::Top {
panic!("extend blocks only allowed at the top level");
}
// No whitespace handling: child template top-level is not used,
// except for the blocks defined in it.
}
}
}
}
fn write_cond(&mut self, ctx: &'a Context, conds: &'a [Cond], ws: WS) {
for (i, &(cws, ref cond, ref nodes)) in conds.iter().enumerate() {
self.handle_ws(cws);
match *cond {
Some(ref expr) => {
let expr_code = self.visit_expr_root(expr);
if i == 0 {
self.write("if ");
} else {
self.dedent();
self.write("} else if ");
}
self.write(&expr_code);
}
None => {
self.dedent();
self.write("} else");
}
}
self.writeln(" {");
self.locals.push();
self.handle(ctx, nodes, AstLevel::Nested);
self.locals.pop();
}
self.handle_ws(ws);
self.writeln("}");
}
fn write_match(
&mut self,
ctx: &'a Context,
ws1: WS,
expr: &Expr,
inter: Option<&'a str>,
arms: &'a [When],
ws2: WS,
) {
self.flush_ws(ws1);
if let Some(inter) = inter {
if !inter.is_empty() {
self.next_ws = Some(inter);
}
}
let expr_code = self.visit_expr_root(expr);
self.writeln(&format!("match &{} {{", expr_code));
for arm in arms {
let &(ws, ref variant, ref params, ref body) = arm;
self.locals.push();
match *variant {
Some(ref param) => {
self.visit_match_variant(param);
}
None => self.write("_"),
};
if !params.is_empty() {
self.write("(");
for (i, param) in params.iter().enumerate() {
if let MatchParameter::Name(p) = *param {
self.locals.insert(p);
}
if i > 0 {
self.write(", ");
}
self.visit_match_param(param);
}
self.write(")");
}
self.writeln(" => {");
self.handle_ws(ws);
self.handle(ctx, body, AstLevel::Nested);
self.writeln("}");
self.locals.pop();
}
self.writeln("}");
self.handle_ws(ws2);
}
fn write_loop(
&mut self,
ctx: &'a Context,
ws1: WS,
var: &'a Target,
iter: &Expr,
body: &'a [Node],
ws2: WS,
) {
self.handle_ws(ws1);
self.locals.push();
let expr_code = self.visit_expr_root(iter);
self.write("for (_loop_index, ");
let targets = self.visit_target(var);
for name in &targets {
self.locals.insert(name);
self.write(name);
}
self.writeln(&format!(") in (&{}).into_iter().enumerate() {{", expr_code));
self.handle(ctx, body, AstLevel::Nested);
self.handle_ws(ws2);
self.writeln("}");
self.locals.pop();
}
fn write_call(
&mut self,
ctx: &'a Context,
ws: WS,
scope: Option<&str>,
name: &str,
args: &[Expr],
) {
if name == "super" {
self.flush_ws(ws);
let line = match self.super_block {
Some(ref name) => format!("self.render_block_{}_into(writer)?;", name),
None => panic!("cannot call 'super()' outside block"),
};
self.writeln(&line);
self.prepare_ws(ws);
self.used_super = true;
return;
}
let def = if let Some(s) = scope {
let path = ctx.imports
.get(s)
.unwrap_or_else(|| panic!("no import found for scope '{}'", s));
let mctx = self.contexts
.get(path)
.unwrap_or_else(|| panic!("context for '{:?}' not found", path));
mctx.macros
.get(name)
.unwrap_or_else(|| panic!("macro '{}' not found in scope '{}'", s, name))
} else {
ctx.macros
.get(name)
.unwrap_or_else(|| panic!("macro '{}' not found", name))
};
self.flush_ws(ws); // Cannot handle_ws() here: whitespace from macro definition comes first
self.locals.push();
self.writeln("{");
self.prepare_ws(def.ws1);
for (i, arg) in def.args.iter().enumerate() {
let expr_code = self.visit_expr_root(
args.get(i)
.unwrap_or_else(|| panic!("macro '{}' takes more than {} arguments", name, i)),
);
self.write(&format!("let {} = &{};", arg, expr_code));
self.locals.insert(arg);
}
self.handle(ctx, &def.nodes, AstLevel::Nested);
self.flush_ws(def.ws2);
self.writeln("}");
self.locals.pop();
self.prepare_ws(ws);
}
fn handle_include(&mut self, ctx: &'a Context, ws: WS, path: &str) {
self.flush_ws(ws);
let path = path::find_template_from_path(path, Some(&self.input.path));
let src = path::get_template_source(&path);
let nodes = parser::parse(&src);
let nested = {
let mut gen = self.child();
gen.handle(ctx, &nodes, AstLevel::Nested);
gen.buf
};
self.buf.push_str(&nested);
self.prepare_ws(ws);
}
fn write_let_decl(&mut self, ws: WS, var: &'a Target) {
self.handle_ws(ws);
self.write("let ");
match *var {
Target::Name(name) => {
self.locals.insert(name);
self.write(name);
}
}
self.writeln(";");
}
fn write_let(&mut self, ws: WS, var: &'a Target, val: &Expr) {
self.handle_ws(ws);
let mut code = String::new();
self.visit_expr(val, &mut code);
match *var {
Target::Name(name) => {
if !self.locals.contains(name) {
self.write("let ");
self.locals.insert(name);
}
self.write(name);
}
}
self.write(&format!(" = {};", &code));
}
fn write_block(&mut self, ws1: WS, name: &str, ws2: WS) {
self.flush_ws(ws1);
self.writeln(&format!("self.render_block_{}_into(writer)?;", name));
self.prepare_ws(ws2);
}
fn write_expr(&mut self, ws: WS, s: &Expr) {
self.handle_ws(ws);
let mut code = String::new();
let wrapped = self.visit_expr(s, &mut code);
self.writeln(&format!("let askama_expr = &{};", code));
use self::DisplayWrap::*;
use super::input::EscapeMode::*;
self.write("writer.write_fmt(format_args!(\"{}\", ");
self.write(match (wrapped, &self.input.escaping) {
(Wrapped, &Html) | (Wrapped, &None) | (Unwrapped, &None) => "askama_expr",
(Unwrapped, &Html) => "&::askama::MarkupDisplay::from(askama_expr)",
});
self.writeln("))?;");
}
fn write_lit(&mut self, lws: &'a str, val: &str, rws: &'a str) {
assert!(self.next_ws.is_none());
if !lws.is_empty() {
if self.skip_ws {
self.skip_ws = false;
} else if val.is_empty() {
assert!(rws.is_empty());
self.next_ws = Some(lws);
} else {
self.writeln(&format!("writer.write_str({:#?})?;", lws));
}
}
if !val.is_empty() {
self.writeln(&format!("writer.write_str({:#?})?;", val));
}
if !rws.is_empty() {
self.next_ws = Some(rws);
}
}
fn write_comment(&mut self, ws: WS) {
self.handle_ws(ws);
}
/* Visitor methods for expression types */
fn visit_expr_root(&mut self, expr: &Expr) -> String {
let mut code = String::new();
self.visit_expr(expr, &mut code);
code
}
fn visit_expr(&mut self, expr: &Expr, code: &mut String) -> DisplayWrap {
match *expr {
Expr::NumLit(s) => self.visit_num_lit(s, code),
Expr::StrLit(s) => self.visit_str_lit(s, code),
Expr::Var(s) => self.visit_var(s, code),
Expr::Path(ref path) => self.visit_path(path, code),
Expr::Array(ref elements) => self.visit_array(elements, code),
Expr::Attr(ref obj, name) => self.visit_attr(obj, name, code),
Expr::Index(ref obj, ref key) => self.visit_index(obj, key, code),
Expr::Filter(name, ref args) => self.visit_filter(name, args, code),
Expr::Unary(op, ref inner) => self.visit_unary(op, inner, code),
Expr::BinOp(op, ref left, ref right) => self.visit_binop(op, left, right, code),
Expr::Range(op, ref left, ref right) => self.visit_range(op, left, right, code),
Expr::Group(ref inner) => self.visit_group(inner, code),
Expr::MethodCall(ref obj, method, ref args) => {
self.visit_method_call(obj, method, args, code)
}
}
}
fn visit_match_variant(&mut self, param: &MatchVariant) -> DisplayWrap {
let mut code = String::new();
let wrapped = match *param {
MatchVariant::StrLit(s) => {
code.push_str("&");
self.visit_str_lit(s, &mut code)
}
MatchVariant::NumLit(s) => self.visit_num_lit(s, &mut code),
MatchVariant::Name(s) => {
code.push_str(s);
DisplayWrap::Unwrapped
}
MatchVariant::Path(ref s) => {
code.push_str(&s.join("::"));
DisplayWrap::Unwrapped
}
};
self.write(&code);
wrapped
}
fn visit_match_param(&mut self, param: &MatchParameter) -> DisplayWrap {
let mut code = String::new();
let wrapped = match *param {
MatchParameter::NumLit(s) => self.visit_num_lit(s, &mut code),
MatchParameter::StrLit(s) => self.visit_str_lit(s, &mut code),
MatchParameter::Name(s) => {
code.push_str(s);
DisplayWrap::Unwrapped
}
};
self.write(&code);
wrapped
}
fn visit_filter(&mut self, name: &str, args: &[Expr], code: &mut String) -> DisplayWrap {
if name == "format" {
self._visit_format_filter(args, code);
return DisplayWrap::Unwrapped;
} else if name == "join" {
self._visit_join_filter(args, code);
return DisplayWrap::Unwrapped;
}
if filters::BUILT_IN_FILTERS.contains(&name) {
code.push_str(&format!("::askama::filters::{}(&", name));
} else {
code.push_str(&format!("filters::{}(&", name));
}
self._visit_args(args, code);
code.push_str(")?");
if name == "safe" || name == "escape" || name == "e" || name == "json" {
DisplayWrap::Wrapped
} else {
DisplayWrap::Unwrapped
}
}
fn _visit_format_filter(&mut self, args: &[Expr], code: &mut String) {
code.push_str("format!(");
self._visit_args(args, code);
code.push_str(")");
}
// Force type coercion on first argument to `join` filter (see #39).
fn _visit_join_filter(&mut self, args: &[Expr], code: &mut String) {
code.push_str("::askama::filters::join((&");
for (i, arg) in args.iter().enumerate() {
if i > 0 {
code.push_str(", &");
}
self.visit_expr(arg, code);
if i == 0 {
code.push_str(").into_iter()");
}
}
code.push_str(")?");
}
fn _visit_args(&mut self, args: &[Expr], code: &mut String) {
for (i, arg) in args.iter().enumerate() {
if i > 0 {
code.push_str(", &");
}
let intercept = match *arg {
Expr::Filter(_, _) | Expr::MethodCall(_, _, _) => true,
_ => false,
};
if intercept {
let offset = code.len();
self.visit_expr(arg, code);
let idx = self.vars;
self.vars += 1;
self.writeln(&format!("let var{} = {};", idx, &code[offset..]));
code.truncate(offset);
code.push_str(&format!("var{}", idx));
} else {
self.visit_expr(arg, code);
}
}
}
fn visit_attr(&mut self, obj: &Expr, attr: &str, code: &mut String) -> DisplayWrap {
if let Expr::Var(name) = *obj {
if name == "loop" {
code.push_str("_loop_index");
if attr == "index" {
code.push_str(" + 1");
return DisplayWrap::Unwrapped;
} else if attr == "index0" {
return DisplayWrap::Unwrapped;
} else if attr == "first" {
code.push_str(" == 0");
return DisplayWrap::Unwrapped;
} else {
panic!("unknown loop variable");
}
}
}
self.visit_expr(obj, code);
code.push_str(&format!(".{}", attr));
DisplayWrap::Unwrapped
}
fn visit_index(&mut self, obj: &Expr, key: &Expr, code: &mut String) -> DisplayWrap {
self.visit_expr(obj, code);
code.push_str("[");
self.visit_expr(key, code);
code.push_str("]");
DisplayWrap::Unwrapped
}
fn visit_method_call(
&mut self,
obj: &Expr,
method: &str,
args: &[Expr],
code: &mut String,
) -> DisplayWrap {
if let Expr::Var("self") = obj {
code.push_str("self");
} else {
self.visit_expr(obj, code);
}
code.push_str(&format!(".{}(", method));
self._visit_args(args, code);
code.push_str(")");
DisplayWrap::Unwrapped
}
fn visit_unary(&mut self, op: &str, inner: &Expr, code: &mut String) -> DisplayWrap {
code.push_str(op);
self.visit_expr(inner, code);
DisplayWrap::Unwrapped
}
fn visit_range(
&mut self,
op: &str,
left: &Option<Box<Expr>>,
right: &Option<Box<Expr>>,
code: &mut String,
) -> DisplayWrap {
if let Some(left) = left {
self.visit_expr(left, code);
}
code.push_str(op);
if let Some(right) = right {
self.visit_expr(right, code);
}
DisplayWrap::Unwrapped
}
fn visit_binop(
&mut self,
op: &str,
left: &Expr,
right: &Expr,
code: &mut String,
) -> DisplayWrap {
self.visit_expr(left, code);
code.push_str(&format!(" {} ", op));
self.visit_expr(right, code);
DisplayWrap::Unwrapped
}
fn visit_group(&mut self, inner: &Expr, code: &mut String) -> DisplayWrap {
code.push_str("(");
self.visit_expr(inner, code);
code.push_str(")");
DisplayWrap::Unwrapped
}
fn visit_array(&mut self, elements: &[Expr], code: &mut String) -> DisplayWrap {
code.push_str("[");
for (i, el) in elements.iter().enumerate() {
if i > 0 {
code.push_str(", ");
}
self.visit_expr(el, code);
}
code.push_str("]");
DisplayWrap::Unwrapped
}
fn visit_path(&mut self, path: &[&str], code: &mut String) -> DisplayWrap {
for (i, part) in path.iter().enumerate() {
if i > 0 {
code.push_str("::");
}
code.push_str(part);
}
DisplayWrap::Unwrapped
}
fn visit_var(&mut self, s: &str, code: &mut String) -> DisplayWrap {
if self.locals.contains(s) {
code.push_str(s);
} else {
code.push_str("self.");
code.push_str(s);
}
DisplayWrap::Unwrapped
}
fn visit_str_lit(&mut self, s: &str, code: &mut String) -> DisplayWrap {
code.push_str(&format!("\"{}\"", s));
DisplayWrap::Unwrapped
}
fn visit_num_lit(&mut self, s: &str, code: &mut String) -> DisplayWrap {
code.push_str(s);
DisplayWrap::Unwrapped
}
fn visit_target_single<'t>(&mut self, name: &'t str) -> Vec<&'t str> {
vec![name]
}
fn visit_target<'t>(&mut self, target: &'t Target) -> Vec<&'t str> {
match *target {
Target::Name(s) => self.visit_target_single(s),
}
}
/* Helper methods for dealing with whitespace nodes */
// Combines `flush_ws()` and `prepare_ws()` to handle both trailing whitespace from the
// preceding literal and leading whitespace from the succeeding literal.
fn handle_ws(&mut self, ws: WS) {
self.flush_ws(ws);
self.prepare_ws(ws);
}
// If the previous literal left some trailing whitespace in `next_ws` and the
// prefix whitespace suppressor from the given argument, flush that whitespace.
// In either case, `next_ws` is reset to `None` (no trailing whitespace).
fn flush_ws(&mut self, ws: WS) {
if self.next_ws.is_some() && !ws.0 {
let val = self.next_ws.unwrap();
if !val.is_empty() {
self.writeln(&format!("writer.write_str({:#?})?;", val));
}
}
self.next_ws = None;
}
// Sets `skip_ws` to match the suffix whitespace suppressor from the given
// argument, to determine whether to suppress leading whitespace from the
// next literal.
fn prepare_ws(&mut self, ws: WS) {
self.skip_ws = ws.1;
}
/* Helper methods for writing to internal buffer */
fn writeln(&mut self, s: &str) {
if s.is_empty() {
return;
}
if s == "}" {
self.dedent();
}
self.write(s);
if s.ends_with('{') {
self.indent();
}
self.buf.push('\n');
self.start = true;
}
fn write(&mut self, s: &str) {
if self.start {
for _ in 0..(self.indent * 4) {
self.buf.push(' ');
}
self.start = false;
}
self.buf.push_str(s);
}
fn indent(&mut self) {
self.indent += 1;
}
fn dedent(&mut self) {
if self.indent == 0 {
panic!("dedent() called while indentation == 0");
}
self.indent -= 1;
}
}
struct SetChain<'a, T: 'a>
where
T: cmp::Eq + hash::Hash,
{
parent: Option<&'a SetChain<'a, T>>,
scopes: Vec<HashSet<T>>,
}
impl<'a, T: 'a> SetChain<'a, T>
where
T: cmp::Eq + hash::Hash,
{
fn new() -> SetChain<'a, T> {
SetChain {
parent: None,
scopes: vec![HashSet::new()],
}
}
fn with_parent<'p>(parent: &'p SetChain<T>) -> SetChain<'p, T> {
SetChain {
parent: Some(parent),
scopes: vec![HashSet::new()],
}
}
fn contains(&self, val: T) -> bool {
self.scopes.iter().rev().any(|set| set.contains(&val)) || match self.parent {
Some(set) => set.contains(val),
None => false,
}
}
fn insert(&mut self, val: T) {
self.scopes.last_mut().unwrap().insert(val);
}
fn push(&mut self) {
self.scopes.push(HashSet::new());
}
fn pop(&mut self) {
self.scopes.pop().unwrap();
assert!(!self.scopes.is_empty());
}
}
struct Heritage<'a> {
root: &'a Context<'a>,
blocks: BlockAncestry<'a>,
}
impl<'a> Heritage<'a> {
fn new<'n>(
mut ctx: &'n Context<'n>,
contexts: &'n HashMap<&'n PathBuf, Context<'n>>,
) -> Heritage<'n> {
let mut blocks: BlockAncestry<'n> = ctx.blocks
.iter()
.map(|(name, def)| (*name, vec![(ctx, *def)]))
.collect();
while let Some(ref path) = ctx.extends {
ctx = &contexts[&path];
for (name, def) in &ctx.blocks {
blocks
.entry(name)
.or_insert_with(|| vec![])
.push((ctx, def));
}
}
Heritage { root: ctx, blocks }
}
}
#[derive(Clone, PartialEq)]
enum AstLevel {
Top,
Block,
Nested,
}
impl Copy for AstLevel {}
#[derive(Clone)]
enum DisplayWrap {
Wrapped,
Unwrapped,
}
impl Copy for DisplayWrap {}
type BlockAncestry<'a> = HashMap<&'a str, Vec<(&'a Context<'a>, &'a Node<'a>)>>;