use std::char; use nom::{ branch::{alt, permutation}, bytes::streaming::{is_a, is_not, tag, tag_no_case, take, take_till, take_until}, character::{ complete::one_of, streaming::{alpha1, char, digit1, none_of, satisfy}, }, combinator::{cond, map, map_parser, map_res, not, opt, peek, recognize, value, verify}, error::{Error, ErrorKind}, multi::{many0, many1, many_till}, sequence::{delimited, pair, preceded, tuple}, Err, IResult, Parser, }; // parser: parses tokens from lexer into events enum ContentItem<'s> { CharData(&'s str), Element(Element<'s>), // Reference(Reference<'s>), // CDSect(CDSect<'s>), } type Content<'s> = Option>>; struct Attribute<'s> { key: &'s str, value: &'s str, } /// Contains only latin characters or dash after first char type EncName<'s> = &'s str; struct DoctypeDecl<'s> { name: &'s str, // TODO: doctype declaration parsing } /// pub fn doctypedecl(input: &str) -> IResult<&str, DoctypeDecl> { todo!() } struct Element<'s> { name: &'s str, attributes: Vec>, content: Content<'s>, } /// Element pub fn element(input: &str) -> IResult<&str, Element> { todo!() } enum Misc<'s> { Comment(Comment<'s>), PI(PI<'s>), } /// Misc pub fn misc(input: &str) -> IResult<&str, Misc> { todo!() } type Document<'s> = (Prolog<'s>, Element<'s>, Vec>); /// [1] document ::= prolog element Misc* pub fn document(input: &str) -> IResult<&str, Document> { tuple((prolog, element, many0(misc)))(input) } type Char = char; /// [2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF] /* any Unicode character, excluding the surrogate blocks, FFFE, and FFFF. */ pub fn xmlchar(input: &str) -> IResult<&str, Char> { satisfy( |c| matches!(c, '\u{9}' | '\u{A}' | '\u{D}' | '\u{20}'..='\u{D7FF}' | '\u{E000}'..='\u{FFFD}' | '\u{10000}'..='\u{10FFFF}'), )(input) } type S<'s> = &'s str; /// [3] S ::= (#x20 | #x9 | #xD | #xA)+ pub fn s(input: &str) -> IResult<&str, S> { is_a("\u{20}\u{9}\u{D}\u{A}")(input) } type NameStartChar = char; /// [4] NameStartChar ::= ":" | [A-Z] | "_" | [a-z] | [#xC0-#xD6] | [#xD8-#xF6] | [#xF8-#x2FF] | [#x370-#x37D] | [#x37F-#x1FFF] | [#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF] | [#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD] | [#x10000-#xEFFFF] pub fn name_start_char(input: &str) -> IResult<&str, NameStartChar> { satisfy( |c| matches!(c, ':' | 'A'..='Z' | '_' | 'a'..='z' | '\u{C0}'..='\u{D6}' | '\u{D8}'..='\u{F6}' | '\u{F8}'..='\u{2FF}' | '\u{370}'..='\u{37D}' | '\u{37F}'..='\u{1FFF}' | '\u{200C}'..='\u{200D}' | '\u{2070}'..='\u{218F}' | '\u{2C00}'..='\u{2FEF}' | '\u{3001}'..='\u{D7FF}' | '\u{F900}'..='\u{FDCF}' | '\u{FDF0}'..='\u{FFFD}' | '\u{10000}'..='\u{EFFFF}'), )(input) } type NameChar = char; /// [4a] NameChar ::= NameStartChar | "-" | "." | [0-9] | #xB7 | [#x0300-#x036F] | [#x203F-#x2040] pub fn name_char(input: &str) -> IResult<&str, NameChar> { alt(( name_start_char, satisfy( |c| matches!(c, '-' | '.' | '0'..='9' | '\u{B7}' | '\u{0300}'..='\u{036F}' | '\u{203F}'..='\u{2040}'), ), ))(input) } type Name<'s> = &'s str; /// [5] Name ::= NameStartChar (NameChar)* pub fn name(input: &str) -> IResult<&str, Name> { recognize(pair(name_start_char, many0(name_char)))(input) } type Names<'s> = &'s str; /// [6] Names ::= Name (#x20 Name)* pub fn names(input: &str) -> IResult<&str, Names> { recognize(pair(name, many0(pair(char('\u{20}'), name))))(input) } type Nmtoken<'s> = &'s str; /// [7] Nmtoken ::= (NameChar)+ pub fn nmtoken(input: &str) -> IResult<&str, Nmtoken> { recognize(many1(name_char))(input) } type Nmtokens<'s> = &'s str; /// [8] Nmtokens ::= Nmtoken (#x20 Nmtoken)* pub fn nmtokens(input: &str) -> IResult<&str, Nmtokens> { recognize(pair(nmtoken, many0(pair(char('\u{20}'), nmtoken))))(input) } type EntityValue<'s> = &'s str; /// [9] EntityValue ::= '"' ([^%&"] | PEReference | Reference)* '"' /// | "'" ([^%&'] | PEReference | Reference)* "'" pub fn entity_value(input: &str) -> IResult<&str, EntityValue> { alt(( delimited( char('"'), recognize(many0(alt((none_of("%&\""), pe_reference, reference)))), char('"'), ), delimited( char('\''), recognize(many0(alt((none_of("%&'"), pe_reference, reference)))), char('\''), ), ))(input) } type AttValue<'s> = &'s str; /// [10] AttValue ::= '"' ([^<&"] | Reference)* '"' /// | "'" ([^<&'] | Reference)* "'" pub fn att_value(input: &str) -> IResult<&str, AttValue> { alt(( delimited( char('"'), recognize(many0(alt((none_of("<&\""), reference)))), char('"'), ), delimited( char('\''), recognize(many0(alt((none_of("<&'"), reference)))), char('\''), ), ))(input) } type SystemLiteral<'s> = &'s str; /// [11] SystemLiteral ::= ('"' [^"]* '"') | ("'" [^']* "'") pub fn system_literal(input: &str) -> IResult<&str, SystemLiteral> { alt(( delimited(char('"'), recognize(many0(none_of("\""))), char('"')), delimited(char('\''), recognize(many0(none_of("'"))), char('\'')), ))(input) } type PubidLiteral<'s> = &'s str; /// [12] PubidLiteral ::= '"' PubidChar* '"' | "'" (PubidChar - "'")* "'" pub fn pubid_literal(input: &str) -> IResult<&str, PubidLiteral> { alt(( delimited(char('"'), recognize(many0(pubid_char)), char('"')), delimited( char('\''), recognize(many0(recognize(not(char('\''))).and_then(pubid_char))), char('\''), ), ))(input) } type PubidChar<'s> = char; /// [13] PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9] | [-'()+,./:=?;!*#@$_%] pub fn pubid_char(input: &str) -> IResult<&str, PubidChar> { satisfy(|c| matches!(c, '\u{20}' | '\u{D}' | '\u{A}' | 'a'..='z' | 'A'..='Z' | '0'..='9'))( input, ) } type CharData<'s> = &'s str; /// [14] CharData ::= [^<&]* - ([^<&]* ']]>' [^<&]*) pub fn char_data(input: &str) -> IResult<&str, CharData> { recognize(many_till( none_of("<&"), peek(alt((recognize(one_of("<&")), tag("]]>")))), ))(input) // let tagg: &str; // if let Ok((_, tagg1)) = peek(take_until::<&str, &str, Error<&str>>("]]>"))(input) { // if let Ok((_, tagg2)) = // peek::<&str, &str, Error<&str>, _>(take_till(|c: char| c == '<' || c == '&'))(input) // { // if tagg1.len() < tagg2.len() { // tagg = tagg1 // } else { // tagg = tagg2 // } // } else { // tagg = tagg1; // } // } else { // (_, tagg) = peek(take_till(|c| c == '<' || c == '&'))(input)? // } // tag(tagg)(input) // recognize(many0(permutation((none_of("<&"), not(tag("]]>"))))))(input) // recognize(many0(not(alt((tag("<"), tag("&"), tag("]]>"))))))(input) // take_till(|c| c == '<' || c == '&').and_then(take_until("]]>"))(input) } type Comment<'s> = &'s str; /// Comment ::= '' pub fn comment(input: &str) -> IResult<&str, Comment> { delimited( tag(""), )(input) } struct PI<'s> { target: &'s str, instruction: Option<&'s str>, } /// [16] PI ::= '' Char*)))? '?>' pub fn pi(input: &str) -> IResult<&str, PI> { let (rest, (target, instruction)) = delimited( tag("")))))), ), tag("?>"), )(input)?; Ok(( rest, PI { target, instruction, }, )) } type PITarget<'s> = &'s str; /// [17] PITarget ::= Name - (('X' | 'x') ('M' | 'm') ('L' | 'l')) pub fn pi_target(input: &str) -> IResult<&str, PITarget> { let (rest, name) = name(input)?; if name.to_lowercase() == "xml" { return Err(Err::Error(Error { input, // TODO: check if better error to return code: ErrorKind::Tag, })); } else { return Ok((rest, name)); } } type CDSect<'s> = (CDStart<'s>, CData<'s>, CDEnd<'s>); /// [18] CDSect ::= CDStart CData CDEnd pub fn cd_sect(input: &str) -> IResult<&str, CDSect> { tuple((cd_start, cdata, cd_end))(input) } type CDStart<'s> = &'s str; /// [19] CDStart ::= ' IResult<&str, CDStart> { tag(" = &'s str; /// [20] CData ::= (Char* - (Char* ']]>' Char*)) pub fn cdata(input: &str) -> IResult<&str, CData> { recognize(many_till(xmlchar, peek(tag("]]>"))))(input) } type CDEnd<'s> = &'s str; /// [21] CDEnd ::= ']]>' pub fn cd_end(input: &str) -> IResult<&str, CDEnd> { tag("]]>")(input) } type Prolog<'s> = ( Option, Vec>, Option<(DoctypeDecl<'s>, Vec>)>, ); /// [22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)? pub fn prolog(input: &str) -> IResult<&str, Prolog> { tuple(( opt(xml_decl), many0(misc), opt(tuple((doctypedecl, many0(misc)))), ))(input) } struct XMLDecl { version_info: VersionInfo, // encoding_decl: Option, // sd_decl: Option, } /// [23] XMLDecl ::= '' pub fn xml_decl(input: &str) -> IResult<&str, XMLDecl> { // (VersionInfo, Option, Option) let (leftover, (version_info /* encoding_decl, sd_decl */,)) = delimited( tag(""), )(input)?; Ok(( leftover, XMLDecl { version_info, // encoding_decl, // sd_decl, }, )) } type VersionInfo = VersionNum; /// [24] VersionInfo ::= S 'version' Eq ("'" VersionNum "'" | '"' VersionNum '"') pub fn version_info(input: &str) -> IResult<&str, VersionInfo> { preceded( tuple((s, tag("version"), eq)), alt(( delimited(char('\''), version_num, char('\'')), delimited(char('"'), version_num, char('"')), )), )(input) } /// [25] Eq ::= S? '=' S? pub fn eq(input: &str) -> IResult<&str, &str> { recognize(tuple((opt(s), char('='), opt(s))))(input) } #[derive(Clone)] enum VersionNum { One, OneDotOne, } /// [26] VersionNum ::= '1.' [0-9]+ pub fn version_num(input: &str) -> IResult<&str, VersionNum> { preceded( tag("1."), alt(( value(VersionNum::One, char('0')), value(VersionNum::OneDotOne, char('1')), )), )(input) } pub fn reference(input: &str) -> IResult<&str, char> { todo!() } pub fn pe_reference(input: &str) -> IResult<&str, char> { todo!() } #[cfg(test)] mod tests { use std::num::NonZero; use super::*; #[test] fn test_char_data() { assert_eq!(Ok(("&def]]>ghi", "abc")), char_data("abc&def]]>ghi")); assert_eq!(Ok(("]]>ghi", "abcdef")), char_data("abcdef]]>ghi")); assert_eq!(Ok(("&defghi", "abc")), char_data("abc&defghi")); assert_eq!(Ok(("]]>def&ghi", "abc")), char_data("abc]]>def&ghi")); assert_eq!(Ok(("&ghi", "abc]>def")), char_data("abc]>def&ghi")); assert_eq!( Err(Err::Incomplete(nom::Needed::Size( NonZero::new(3usize).unwrap() ))), char_data("abcdefghi") ); } #[test] fn test_comment() { assert_eq!(Ok(("", "")), comment("")); assert_eq!(Ok(("", "asdf")), comment("")); assert_eq!(Ok(("", "as-df")), comment("")); assert_eq!( Err(Err::Incomplete(nom::Needed::Size( NonZero::new(2usize).unwrap() ))), comment("