//! Deal with content in other content. //! //! To deal with content in content, *you* (a `micromark-rs` contributor) add //! information on events. //! Events are a flat list, but they can be connected to each other by setting //! `previous` and `next` links. //! These links: //! //! * …must occur on [`Enter`][Kind::Enter] events only //! * …must occur on void events (they are followed by their corresponding //! [`Exit`][Kind::Exit] event) //! * …must have `content_type` field to define the kind of subcontent //! //! Links will then be passed through a tokenizer for the corresponding content //! type by `subtokenize`. //! The subevents they result in are split up into slots for each linked token //! and replace those links. //! //! Subevents are not immediately subtokenized again because markdown prevents //! us from doing so due to definitions, which can occur after references, and //! thus the whole document needs to be parsed up to the level of definitions, //! before any level that can include references can be parsed. use crate::event::{Content, Event, Kind}; use crate::parser::ParseState; use crate::state::{Name as StateName, State}; use crate::tokenizer::Tokenizer; use crate::util::edit_map::EditMap; /// Link two [`Event`][]s. /// /// Arbitrary (void) events can be linked together. /// This optimizes for the common case where the token at `index` is connected /// to the previous void token. pub fn link(events: &mut [Event], index: usize) { link_to(events, index - 2, index); } /// Link two arbitrary [`Event`][]s together. pub fn link_to(events: &mut [Event], pevious: usize, next: usize) { debug_assert_eq!(events[pevious].kind, Kind::Enter); debug_assert_eq!(events[pevious + 1].kind, Kind::Exit); debug_assert_eq!(events[pevious + 1].name, events[pevious].name); debug_assert_eq!(events[next].kind, Kind::Enter); // Note: the exit of this event may not exist, so don’t check for that. let link_previous = events[pevious] .link .as_mut() .expect("expected `link` on previous"); link_previous.next = Some(next); let link_next = events[next].link.as_mut().expect("expected `link` on next"); link_next.previous = Some(pevious); debug_assert_eq!( events[pevious].link.as_ref().unwrap().content_type, events[next].link.as_ref().unwrap().content_type ); } /// Parse linked events. /// /// Supposed to be called repeatedly, returns `true` when done. pub fn subtokenize(events: &mut Vec, parse_state: &ParseState) -> bool { let mut map = EditMap::new(); let mut done = true; let mut index = 0; while index < events.len() { let event = &events[index]; // Find each first opening chunk. if let Some(ref link) = event.link { debug_assert_eq!(event.kind, Kind::Enter); // No need to enter linked events again. if link.previous == None { // Index into `events` pointing to a chunk. let mut link_index = Some(index); // Subtokenizer. let mut tokenizer = Tokenizer::new(event.point.clone(), parse_state); // Substate. let mut state = State::Next(if link.content_type == Content::String { StateName::StringStart } else { StateName::TextStart }); // Loop through links to pass them in order to the subtokenizer. while let Some(index) = link_index { let enter = &events[index]; let link_curr = enter.link.as_ref().expect("expected link"); debug_assert_eq!(enter.kind, Kind::Enter); if link_curr.previous != None { tokenizer.define_skip(enter.point.clone()); } let end = &events[index + 1].point; state = tokenizer.push( (enter.point.index, enter.point.vs), (end.index, end.vs), state, ); link_index = link_curr.next; } tokenizer.flush(state, true); divide_events(&mut map, events, index, &mut tokenizer.events); done = false; } } index += 1; } map.consume(events); done } /// Divide `child_events` over links in `events`, the first of which is at /// `link_index`. pub fn divide_events( map: &mut EditMap, events: &[Event], mut link_index: usize, child_events: &mut Vec, ) { // Loop through `child_events` to figure out which parts belong where and // fix deep links. let mut child_index = 0; let mut slices = vec![]; let mut slice_start = 0; let mut old_prev: Option = None; while child_index < child_events.len() { let current = &child_events[child_index].point; let end = &events[link_index + 1].point; // Find the first event that starts after the end we’re looking // for. if current.index > end.index || (current.index == end.index && current.vs > end.vs) { slices.push((link_index, slice_start)); slice_start = child_index; link_index = events[link_index].link.as_ref().unwrap().next.unwrap(); } // Fix sublinks. if let Some(sublink_curr) = &child_events[child_index].link { if sublink_curr.previous.is_some() { let old_prev = old_prev.unwrap(); let prev_event = &mut child_events[old_prev]; // The `index` in `events` where the current link is, // minus one to get the previous link, // minus 2 events (the enter and exit) for each removed // link. let new_link = if slices.is_empty() { old_prev + link_index + 2 } else { old_prev + link_index - (slices.len() - 1) * 2 }; prev_event.link.as_mut().unwrap().next = Some(new_link); } } // If there is a `next` link in the subevents, we have to change // its `previous` index to account for the shifted events. // If it points to a next event, we also change the next event’s // reference back to *this* event. if let Some(sublink_curr) = &child_events[child_index].link { if let Some(next) = sublink_curr.next { let sublink_next = child_events[next].link.as_mut().unwrap(); old_prev = sublink_next.previous; sublink_next.previous = sublink_next .previous // The `index` in `events` where the current link is, // minus 2 events (the enter and exit) for each removed // link. .map(|previous| previous + link_index - (slices.len() * 2)); } } child_index += 1; } if !child_events.is_empty() { slices.push((link_index, slice_start)); } // Finally, inject the subevents. let mut index = slices.len(); while index > 0 { index -= 1; map.add( slices[index].0, if slices[index].0 == events.len() { 0 } else { 2 }, child_events.split_off(slices[index].1), ); } }