//! Deal with content in other content. //! //! To deal with content in content, *you* (a `micromark-rs` contributor) add //! information on events. //! Events are a flat list, but they can be connected to each other by setting //! `previous` and `next` links. //! These links: //! //! * …must occur on [`Enter`][EventType::Enter] events only //! * …must occur on void events (they are followed by their corresponding //! [`Exit`][EventType::Exit] event) //! * …must have `content_type` field to define the kind of subcontent //! //! Links will then be passed through a tokenizer for the corresponding content //! type by `subtokenize`. //! The subevents they result in are split up into slots for each linked token //! and replace those links. //! //! Subevents are not immediately subtokenized again because markdown prevents //! us from doing so due to definitions, which can occur after references, and //! thus the whole document needs to be parsed up to the level of definitions, //! before any level that can include references can be parsed. use crate::content::{string::start as string, text::start as text}; use crate::parser::ParseState; use crate::tokenizer::{ContentType, Event, EventType, State, StateFn, StateFnResult, Tokenizer}; use crate::util::span; use std::collections::HashMap; /// Create a link between two [`Event`][]s. /// /// Arbitrary (void) events can be linked together. /// This optimizes for the common case where the token at `index` is connected /// to the previous void token. pub fn link(events: &mut [Event], index: usize) { link_to(events, index - 2, index); } /// To do pub fn link_to(events: &mut [Event], pevious: usize, next: usize) { let prev = &mut events[pevious]; assert!( prev.content_type.is_some(), "expected `content_type` on previous" ); assert_eq!(prev.event_type, EventType::Enter); prev.next = Some(next); let prev_ref = &events[pevious]; let prev_exit_ref = &events[pevious + 1]; let curr_ref = &events[next]; assert_eq!(prev_exit_ref.event_type, EventType::Exit); assert_eq!(prev_exit_ref.token_type, prev_ref.token_type); assert_eq!(curr_ref.content_type, prev_ref.content_type); let curr = &mut events[next]; assert_eq!(curr.event_type, EventType::Enter); curr.previous = Some(pevious); // Note: the exit of this event may not exist, so don’t check for that. } /// Parse linked events. /// /// Supposed to be called repeatedly, returns `1: true` when done. pub fn subtokenize(mut events: Vec, parse_state: &ParseState) -> (Vec, bool) { let mut index = 0; // Map of first chunks to their tokenizer. let mut head_to_tokenizer: HashMap = HashMap::new(); // Map of chunks to their head and corresponding range of events. let mut link_to_info: HashMap = HashMap::new(); let mut done = true; if events.is_empty() { return (events, true); } while index < events.len() { let event = &events[index]; // Find each first opening chunk. if let Some(ref content_type) = event.content_type { assert_eq!(event.event_type, EventType::Enter); // No need to enter linked events again. if event.previous == None { done = false; // Index into `events` pointing to a chunk. let mut index_opt: Option = Some(index); // Subtokenizer. let mut tokenizer = Tokenizer::new(event.point.clone(), event.index, parse_state); // Substate. let mut result: StateFnResult = ( State::Fn(Box::new(if *content_type == ContentType::String { string } else { text })), None, ); // Indices into `codes` of each end of chunk. let mut ends: Vec = vec![]; // Loop through chunks to pass them in order to the subtokenizer. while let Some(index_ptr) = index_opt { let enter = &events[index_ptr]; assert_eq!(enter.event_type, EventType::Enter); let span = span::Span { start_index: enter.index, end_index: events[index_ptr + 1].index, }; ends.push(span.end_index); if enter.previous != None { tokenizer.define_skip(&enter.point, span.start_index); } let func: Box = match result.0 { State::Fn(func) => func, _ => unreachable!("cannot be ok/nok"), }; result = tokenizer.push( span::codes(&parse_state.codes, &span), func, enter.next == None, ); assert!(result.1.is_none(), "expected no remainder"); index_opt = enter.next; } // Now, loop through all subevents (and `ends`), to figure out // which parts belong where. // Current index. let mut subindex = 0; // Index into subevents that starts the current slice. let mut last_start = 0; // Counter into `ends`: the linked token we are at. let mut end_index = 0; let mut index_opt: Option = Some(index); while subindex < tokenizer.events.len() { let subevent = &mut tokenizer.events[subindex]; // Find the first event that starts after the end we’re looking // for. // To do: is this logic correct? if subevent.event_type == EventType::Enter && subevent.index >= ends[end_index] { let link = index_opt.unwrap(); link_to_info.insert(link, (index, last_start, subindex)); last_start = subindex; end_index += 1; index_opt = events[link].next; } // If there is a `next` link in the subevents, we have to change // its index to account for the shifted events. // If it points to a next event, we also change the next event’s // reference back to *this* event. if let Some(next) = subevent.next { // The `index` in `events` where the current link is, // minus 2 events (the enter and exit) for each removed // link. let shift = index_opt.unwrap() - (end_index * 2); subevent.next = Some(next + shift); let next_ev = &mut tokenizer.events[next]; let previous = next_ev.previous.unwrap(); next_ev.previous = Some(previous + shift); } subindex += 1; } link_to_info.insert(index_opt.unwrap(), (index, last_start, subindex)); head_to_tokenizer.insert(index, tokenizer); } } index += 1; } // Now that we fed everything into a tokenizer, and we know which parts // belong where, the final task is to splice the events from each // tokenizer into the current events. // To do: instead of splicing, it might be possible to create a new `events` // from each slice and slices from events? let mut index = events.len() - 1; while index > 0 { let slice_opt = link_to_info.get(&index); if let Some(slice) = slice_opt { let (head, start, end) = *slice; // If there’s a slice at this index, it must also point to a head, // and that head must have a tokenizer. let tokenizer = head_to_tokenizer.get(&head).unwrap(); // To do: figure out a way that moves instead of clones? events.splice(index..(index + 2), tokenizer.events[start..end].to_vec()); } index -= 1; } (events, done) }