1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
use std::marker::PhantomData;
use std::ops::RangeBounds;
pub const MAX_WRITE_SIZE: usize = 1024 * 100;
#[derive(Debug)]
pub struct Buffer<T> {
label: &'static str,
size: u64,
usage: wgpu::BufferUsages,
pub(crate) raw: wgpu::Buffer,
offsets: Vec<wgpu::BufferAddress>,
type_: PhantomData<T>,
}
impl<T: bytemuck::Pod> Buffer<T> {
pub fn new(
device: &wgpu::Device,
label: &'static str,
amount: usize,
usage: wgpu::BufferUsages,
) -> Self {
let size = next_copy_size::<T>(amount);
let raw = device.create_buffer(&wgpu::BufferDescriptor {
label: Some(label),
size,
usage,
mapped_at_creation: false,
});
Self {
label,
size,
usage,
raw,
offsets: Vec::new(),
type_: PhantomData,
}
}
pub fn resize(&mut self, device: &wgpu::Device, new_count: usize) -> bool {
let new_size = (std::mem::size_of::<T>() * new_count) as u64;
if self.size < new_size {
self.offsets.clear();
self.raw = device.create_buffer(&wgpu::BufferDescriptor {
label: Some(self.label),
size: new_size,
usage: self.usage,
mapped_at_creation: false,
});
self.size = new_size;
true
} else {
false
}
}
/// Returns the size of the written bytes.
pub fn write(
&mut self,
device: &wgpu::Device,
encoder: &mut wgpu::CommandEncoder,
belt: &mut wgpu::util::StagingBelt,
offset: usize,
contents: &[T],
) -> usize {
let bytes: &[u8] = bytemuck::cast_slice(contents);
if bytes.len() <= MAX_WRITE_SIZE {
belt.write_buffer(
encoder,
&self.raw,
offset as u64,
(bytes.len() as u64).try_into().expect("Non-empty write"),
device,
)
.copy_from_slice(bytes);
} else {
let mut bytes_written = 0;
let bytes_per_chunk = (bytes.len().min(MAX_WRITE_SIZE) as u64)
.try_into()
.expect("Non-empty write");
while bytes_written < bytes.len() {
belt.write_buffer(
encoder,
&self.raw,
(offset + bytes_written) as u64,
bytes_per_chunk,
device,
)
.copy_from_slice(
&bytes[bytes_written
..bytes_written + bytes_per_chunk.get() as usize],
);
bytes_written += bytes_per_chunk.get() as usize;
}
}
self.offsets.push(offset as u64);
bytes.len()
}
pub fn slice(
&self,
bounds: impl RangeBounds<wgpu::BufferAddress>,
) -> wgpu::BufferSlice<'_> {
self.raw.slice(bounds)
}
/// Returns the slice calculated from the offset stored at the given index.
pub fn slice_from_index(&self, index: usize) -> wgpu::BufferSlice<'_> {
self.raw.slice(self.offset_at(index)..)
}
/// Clears any temporary data (i.e. offsets) from the buffer.
pub fn clear(&mut self) {
self.offsets.clear();
}
/// Returns the offset at `index`, if it exists.
fn offset_at(&self, index: usize) -> &wgpu::BufferAddress {
self.offsets.get(index).expect("No offset at index.")
}
}
fn next_copy_size<T>(amount: usize) -> u64 {
let align_mask = wgpu::COPY_BUFFER_ALIGNMENT - 1;
(((std::mem::size_of::<T>() * amount).next_power_of_two() as u64
+ align_mask)
& !align_mask)
.max(wgpu::COPY_BUFFER_ALIGNMENT)
}
|