1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
//! This example shows how to use touch events in `Canvas` to draw
//! a circle around each fingertip. This only works on touch-enabled
//! computers like Microsoft Surface.
use iced::mouse;
use iced::touch;
use iced::widget::canvas::event;
use iced::widget::canvas::stroke::{self, Stroke};
use iced::widget::canvas::{self, Canvas, Geometry};
use iced::{Color, Element, Fill, Point, Rectangle, Renderer, Theme};
use std::collections::HashMap;
pub fn main() -> iced::Result {
tracing_subscriber::fmt::init();
iced::application("Multitouch - Iced", Multitouch::update, Multitouch::view)
.antialiasing(true)
.centered()
.run()
}
#[derive(Default)]
struct Multitouch {
cache: canvas::Cache,
fingers: HashMap<touch::Finger, Point>,
}
#[derive(Debug)]
enum Message {
FingerPressed { id: touch::Finger, position: Point },
FingerLifted { id: touch::Finger },
}
impl Multitouch {
fn update(&mut self, message: Message) {
match message {
Message::FingerPressed { id, position } => {
self.fingers.insert(id, position);
self.cache.clear();
}
Message::FingerLifted { id } => {
self.fingers.remove(&id);
self.cache.clear();
}
}
}
fn view(&self) -> Element<Message> {
Canvas::new(self).width(Fill).height(Fill).into()
}
}
impl canvas::Program<Message> for Multitouch {
type State = ();
fn update(
&self,
_state: &mut Self::State,
event: event::Event,
_bounds: Rectangle,
_cursor: mouse::Cursor,
) -> (event::Status, Option<Message>) {
match event {
event::Event::Touch(touch_event) => match touch_event {
touch::Event::FingerPressed { id, position }
| touch::Event::FingerMoved { id, position } => (
event::Status::Captured,
Some(Message::FingerPressed { id, position }),
),
touch::Event::FingerLifted { id, .. }
| touch::Event::FingerLost { id, .. } => (
event::Status::Captured,
Some(Message::FingerLifted { id }),
),
},
_ => (event::Status::Ignored, None),
}
}
fn draw(
&self,
_state: &Self::State,
renderer: &Renderer,
_theme: &Theme,
bounds: Rectangle,
_cursor: mouse::Cursor,
) -> Vec<Geometry> {
let fingerweb = self.cache.draw(renderer, bounds.size(), |frame| {
if self.fingers.len() < 2 {
return;
}
// Collect tuples of (id, point);
let mut zones: Vec<(u64, Point)> =
self.fingers.iter().map(|(id, pt)| (id.0, *pt)).collect();
// Sort by ID
zones.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap());
// Generate sorted list of points
let vpoints: Vec<(f64, f64)> = zones
.iter()
.map(|(_, p)| (f64::from(p.x), f64::from(p.y)))
.collect();
let diagram: voronator::VoronoiDiagram<
voronator::delaunator::Point,
> = voronator::VoronoiDiagram::from_tuple(
&(0.0, 0.0),
&(700.0, 700.0),
&vpoints,
)
.expect("Generate Voronoi diagram");
for (cell, zone) in diagram.cells().iter().zip(zones) {
let mut builder = canvas::path::Builder::new();
for (index, p) in cell.points().iter().enumerate() {
let p = Point::new(p.x as f32, p.y as f32);
match index {
0 => builder.move_to(p),
_ => builder.line_to(p),
}
}
let path = builder.build();
let color_r = (10 % zone.0) as f32 / 20.0;
let color_g = (10 % (zone.0 + 8)) as f32 / 20.0;
let color_b = (10 % (zone.0 + 3)) as f32 / 20.0;
frame.fill(
&path,
Color {
r: color_r,
g: color_g,
b: color_b,
a: 1.0,
},
);
frame.stroke(
&path,
Stroke {
style: stroke::Style::Solid(Color::BLACK),
width: 3.0,
..Stroke::default()
},
);
}
});
vec![fingerweb]
}
}
|