blob: ebb85f3cf59090ed967ab1f237053f27727cbdf8 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
|
//! Control the rotation of some content (like an image) within a space.
use crate::{Radians, Size};
/// The strategy used to rotate the content.
///
/// This is used to control the behavior of the layout when the content is rotated
/// by a certain angle.
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum Rotation {
/// The element will float while rotating. The layout will be kept exactly as it was
/// before the rotation.
///
/// This is especially useful when used for animations, as it will avoid the
/// layout being shifted or resized when smoothly i.e. an icon.
///
/// This is the default.
Floating(Radians),
/// The element will be solid while rotating. The layout will be adjusted to fit
/// the rotated content.
///
/// This allows you to rotate an image and have the layout adjust to fit the new
/// size of the image.
Solid(Radians),
}
impl Rotation {
/// Returns the angle of the [`Rotation`] in [`Radians`].
pub fn radians(self) -> Radians {
match self {
Rotation::Floating(radians) | Rotation::Solid(radians) => radians,
}
}
/// Rotates the given [`Size`].
pub fn apply(self, size: Size) -> Size {
match self {
Self::Floating(_) => size,
Self::Solid(rotation) => {
let radians = f32::from(rotation);
Size {
width: (size.width * radians.cos()).abs()
+ (size.height * radians.sin()).abs(),
height: (size.width * radians.sin()).abs()
+ (size.height * radians.cos()).abs(),
}
}
}
}
}
impl Default for Rotation {
fn default() -> Self {
Self::Floating(Radians(0.0))
}
}
impl From<Radians> for Rotation {
fn from(radians: Radians) -> Self {
Self::Floating(radians)
}
}
impl From<f32> for Rotation {
fn from(radians: f32) -> Self {
Self::Floating(Radians(radians))
}
}
|