mod atlas; #[cfg(feature = "image")] mod raster; #[cfg(feature = "svg")] mod vector; use crate::Transformation; use atlas::Atlas; use iced_native::Rectangle; use std::cell::RefCell; use std::mem; use zerocopy::AsBytes; #[cfg(feature = "image")] use iced_native::image; #[cfg(feature = "svg")] use iced_native::svg; #[derive(Debug)] pub struct Pipeline { #[cfg(feature = "image")] raster_cache: RefCell, #[cfg(feature = "svg")] vector_cache: RefCell, pipeline: wgpu::RenderPipeline, uniforms: wgpu::Buffer, vertices: wgpu::Buffer, indices: wgpu::Buffer, instances: wgpu::Buffer, constants: wgpu::BindGroup, texture: wgpu::BindGroup, texture_version: usize, texture_layout: wgpu::BindGroupLayout, texture_atlas: Atlas, } impl Pipeline { pub fn new(device: &wgpu::Device, format: wgpu::TextureFormat) -> Self { let sampler = device.create_sampler(&wgpu::SamplerDescriptor { address_mode_u: wgpu::AddressMode::ClampToEdge, address_mode_v: wgpu::AddressMode::ClampToEdge, address_mode_w: wgpu::AddressMode::ClampToEdge, mag_filter: wgpu::FilterMode::Linear, min_filter: wgpu::FilterMode::Linear, mipmap_filter: wgpu::FilterMode::Linear, lod_min_clamp: -100.0, lod_max_clamp: 100.0, compare: wgpu::CompareFunction::Always, }); let constant_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { label: None, bindings: &[ wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStage::VERTEX, ty: wgpu::BindingType::UniformBuffer { dynamic: false }, }, wgpu::BindGroupLayoutEntry { binding: 1, visibility: wgpu::ShaderStage::FRAGMENT, ty: wgpu::BindingType::Sampler { comparison: false }, }, ], }); let uniforms = Uniforms { transform: Transformation::identity().into(), }; let uniforms_buffer = device.create_buffer_with_data( uniforms.as_bytes(), wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST, ); let constant_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { label: None, layout: &constant_layout, bindings: &[ wgpu::Binding { binding: 0, resource: wgpu::BindingResource::Buffer { buffer: &uniforms_buffer, range: 0..std::mem::size_of::() as u64, }, }, wgpu::Binding { binding: 1, resource: wgpu::BindingResource::Sampler(&sampler), }, ], }); let texture_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { label: None, bindings: &[wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStage::FRAGMENT, ty: wgpu::BindingType::SampledTexture { dimension: wgpu::TextureViewDimension::D2, component_type: wgpu::TextureComponentType::Float, multisampled: false, }, }], }); let layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { bind_group_layouts: &[&constant_layout, &texture_layout], }); let vs = include_bytes!("shader/image.vert.spv"); let vs_module = device.create_shader_module( &wgpu::read_spirv(std::io::Cursor::new(&vs[..])) .expect("Read image vertex shader as SPIR-V"), ); let fs = include_bytes!("shader/image.frag.spv"); let fs_module = device.create_shader_module( &wgpu::read_spirv(std::io::Cursor::new(&fs[..])) .expect("Read image fragment shader as SPIR-V"), ); let pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor { layout: &layout, vertex_stage: wgpu::ProgrammableStageDescriptor { module: &vs_module, entry_point: "main", }, fragment_stage: Some(wgpu::ProgrammableStageDescriptor { module: &fs_module, entry_point: "main", }), rasterization_state: Some(wgpu::RasterizationStateDescriptor { front_face: wgpu::FrontFace::Cw, cull_mode: wgpu::CullMode::None, depth_bias: 0, depth_bias_slope_scale: 0.0, depth_bias_clamp: 0.0, }), primitive_topology: wgpu::PrimitiveTopology::TriangleList, color_states: &[wgpu::ColorStateDescriptor { format, color_blend: wgpu::BlendDescriptor { src_factor: wgpu::BlendFactor::SrcAlpha, dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha, operation: wgpu::BlendOperation::Add, }, alpha_blend: wgpu::BlendDescriptor { src_factor: wgpu::BlendFactor::One, dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha, operation: wgpu::BlendOperation::Add, }, write_mask: wgpu::ColorWrite::ALL, }], depth_stencil_state: None, vertex_state: wgpu::VertexStateDescriptor { index_format: wgpu::IndexFormat::Uint16, vertex_buffers: &[ wgpu::VertexBufferDescriptor { stride: mem::size_of::() as u64, step_mode: wgpu::InputStepMode::Vertex, attributes: &[wgpu::VertexAttributeDescriptor { shader_location: 0, format: wgpu::VertexFormat::Float2, offset: 0, }], }, wgpu::VertexBufferDescriptor { stride: mem::size_of::() as u64, step_mode: wgpu::InputStepMode::Instance, attributes: &[ wgpu::VertexAttributeDescriptor { shader_location: 1, format: wgpu::VertexFormat::Float2, offset: 0, }, wgpu::VertexAttributeDescriptor { shader_location: 2, format: wgpu::VertexFormat::Float2, offset: 4 * 2, }, wgpu::VertexAttributeDescriptor { shader_location: 3, format: wgpu::VertexFormat::Float2, offset: 4 * 4, }, wgpu::VertexAttributeDescriptor { shader_location: 4, format: wgpu::VertexFormat::Float2, offset: 4 * 6, }, wgpu::VertexAttributeDescriptor { shader_location: 5, format: wgpu::VertexFormat::Uint, offset: 4 * 8, }, ], }, ], }, sample_count: 1, sample_mask: !0, alpha_to_coverage_enabled: false, }); let vertices = device.create_buffer_with_data( QUAD_VERTS.as_bytes(), wgpu::BufferUsage::VERTEX, ); let indices = device.create_buffer_with_data( QUAD_INDICES.as_bytes(), wgpu::BufferUsage::INDEX, ); let instances = device.create_buffer(&wgpu::BufferDescriptor { label: None, size: mem::size_of::() as u64 * Instance::MAX as u64, usage: wgpu::BufferUsage::VERTEX | wgpu::BufferUsage::COPY_DST, }); let texture_atlas = Atlas::new(device); let texture = device.create_bind_group(&wgpu::BindGroupDescriptor { label: None, layout: &texture_layout, bindings: &[wgpu::Binding { binding: 0, resource: wgpu::BindingResource::TextureView( &texture_atlas.view(), ), }], }); Pipeline { #[cfg(feature = "image")] raster_cache: RefCell::new(raster::Cache::new()), #[cfg(feature = "svg")] vector_cache: RefCell::new(vector::Cache::new()), pipeline, uniforms: uniforms_buffer, vertices, indices, instances, constants: constant_bind_group, texture, texture_version: texture_atlas.layer_count(), texture_layout, texture_atlas, } } #[cfg(feature = "image")] pub fn dimensions(&self, handle: &image::Handle) -> (u32, u32) { let mut cache = self.raster_cache.borrow_mut(); let memory = cache.load(&handle); memory.dimensions() } #[cfg(feature = "svg")] pub fn viewport_dimensions(&self, handle: &svg::Handle) -> (u32, u32) { let mut cache = self.vector_cache.borrow_mut(); let svg = cache.load(&handle); svg.viewport_dimensions() } pub fn draw( &mut self, device: &wgpu::Device, encoder: &mut wgpu::CommandEncoder, images: &[Image], transformation: Transformation, bounds: Rectangle, target: &wgpu::TextureView, _scale: f32, ) { let instances: &mut Vec = &mut Vec::new(); #[cfg(feature = "image")] let mut raster_cache = self.raster_cache.borrow_mut(); #[cfg(feature = "svg")] let mut vector_cache = self.vector_cache.borrow_mut(); for image in images { match &image.handle { #[cfg(feature = "image")] Handle::Raster(handle) => { if let Some(atlas_entry) = raster_cache.upload( handle, device, encoder, &mut self.texture_atlas, ) { add_instances(image, atlas_entry, instances); } } #[cfg(feature = "svg")] Handle::Vector(handle) => { if let Some(atlas_entry) = vector_cache.upload( handle, image.size, _scale, device, encoder, &mut self.texture_atlas, ) { add_instances(image, atlas_entry, instances); } } } } if instances.is_empty() { return; } let texture_version = self.texture_atlas.layer_count(); if self.texture_version != texture_version { log::info!("Atlas has grown. Recreating bind group..."); self.texture = device.create_bind_group(&wgpu::BindGroupDescriptor { label: None, layout: &self.texture_layout, bindings: &[wgpu::Binding { binding: 0, resource: wgpu::BindingResource::TextureView( &self.texture_atlas.view(), ), }], }); self.texture_version = texture_version; } let uniforms_buffer = device.create_buffer_with_data( Uniforms { transform: transformation.into(), } .as_bytes(), wgpu::BufferUsage::COPY_SRC, ); encoder.copy_buffer_to_buffer( &uniforms_buffer, 0, &self.uniforms, 0, std::mem::size_of::() as u64, ); let instances_buffer = device.create_buffer_with_data( instances.as_bytes(), wgpu::BufferUsage::COPY_SRC, ); let mut i = 0; let total = instances.len(); while i < total { let end = (i + Instance::MAX).min(total); let amount = end - i; encoder.copy_buffer_to_buffer( &instances_buffer, (i * std::mem::size_of::()) as u64, &self.instances, 0, (amount * std::mem::size_of::()) as u64, ); let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { color_attachments: &[ wgpu::RenderPassColorAttachmentDescriptor { attachment: target, resolve_target: None, load_op: wgpu::LoadOp::Load, store_op: wgpu::StoreOp::Store, clear_color: wgpu::Color { r: 0.0, g: 0.0, b: 0.0, a: 0.0, }, }, ], depth_stencil_attachment: None, }); render_pass.set_pipeline(&self.pipeline); render_pass.set_bind_group(0, &self.constants, &[]); render_pass.set_bind_group(1, &self.texture, &[]); render_pass.set_index_buffer(&self.indices, 0, 0); render_pass.set_vertex_buffer(0, &self.vertices, 0, 0); render_pass.set_vertex_buffer(1, &self.instances, 0, 0); render_pass.set_scissor_rect( bounds.x, bounds.y, bounds.width, bounds.height, ); render_pass.draw_indexed( 0..QUAD_INDICES.len() as u32, 0, 0..amount as u32, ); i += Instance::MAX; } } pub fn trim_cache(&mut self) { #[cfg(feature = "image")] self.raster_cache.borrow_mut().trim(&mut self.texture_atlas); #[cfg(feature = "svg")] self.vector_cache.borrow_mut().trim(&mut self.texture_atlas); } } pub struct Image { pub handle: Handle, pub position: [f32; 2], pub size: [f32; 2], } pub enum Handle { #[cfg(feature = "image")] Raster(image::Handle), #[cfg(feature = "svg")] Vector(svg::Handle), } #[repr(C)] #[derive(Clone, Copy, AsBytes)] pub struct Vertex { _position: [f32; 2], } const QUAD_INDICES: [u16; 6] = [0, 1, 2, 0, 2, 3]; const QUAD_VERTS: [Vertex; 4] = [ Vertex { _position: [0.0, 0.0], }, Vertex { _position: [1.0, 0.0], }, Vertex { _position: [1.0, 1.0], }, Vertex { _position: [0.0, 1.0], }, ]; #[repr(C)] #[derive(Debug, Clone, Copy, AsBytes)] struct Instance { _position: [f32; 2], _size: [f32; 2], _position_in_atlas: [f32; 2], _size_in_atlas: [f32; 2], _layer: u32, } impl Instance { pub const MAX: usize = 1_000; } #[repr(C)] #[derive(Debug, Clone, Copy, AsBytes)] struct Uniforms { transform: [f32; 16], } fn add_instances( image: &Image, entry: &atlas::Entry, instances: &mut Vec, ) { match entry { atlas::Entry::Contiguous(allocation) => { add_instance(image.position, image.size, allocation, instances); } atlas::Entry::Fragmented { fragments, size } => { let scaling_x = image.size[0] / size.0 as f32; let scaling_y = image.size[1] / size.1 as f32; for fragment in fragments { let allocation = &fragment.allocation; let [x, y] = image.position; let (fragment_x, fragment_y) = fragment.position; let (fragment_width, fragment_height) = allocation.size(); let position = [ x + fragment_x as f32 * scaling_x, y + fragment_y as f32 * scaling_y, ]; let size = [ fragment_width as f32 * scaling_x, fragment_height as f32 * scaling_y, ]; add_instance(position, size, allocation, instances); } } } } #[inline] fn add_instance( position: [f32; 2], size: [f32; 2], allocation: &atlas::Allocation, instances: &mut Vec, ) { let (x, y) = allocation.position(); let (width, height) = allocation.size(); let layer = allocation.layer(); let instance = Instance { _position: position, _size: size, _position_in_atlas: [ (x as f32 + 0.5) / atlas::SIZE as f32, (y as f32 + 0.5) / atlas::SIZE as f32, ], _size_in_atlas: [ (width as f32 - 1.0) / atlas::SIZE as f32, (height as f32 - 1.0) / atlas::SIZE as f32, ], _layer: layer as u32, }; instances.push(instance); }