use crate::{Point, Rectangle, Vector}; use std::f32::consts::{FRAC_PI_2, PI}; use std::fmt::Display; use std::ops::{Add, AddAssign, Div, Mul, RangeInclusive, Rem, Sub, SubAssign}; /// Degrees #[derive(Debug, Copy, Clone, PartialEq, PartialOrd)] pub struct Degrees(pub f32); impl Degrees { /// The range of degrees of a circle. pub const RANGE: RangeInclusive = Self(0.0)..=Self(360.0); } impl PartialEq for Degrees { fn eq(&self, other: &f32) -> bool { self.0.eq(other) } } impl PartialOrd for Degrees { fn partial_cmp(&self, other: &f32) -> Option { self.0.partial_cmp(other) } } impl From for Degrees { fn from(degrees: f32) -> Self { Self(degrees) } } impl From for Degrees { fn from(degrees: u8) -> Self { Self(f32::from(degrees)) } } impl From for f32 { fn from(degrees: Degrees) -> Self { degrees.0 } } impl From for f64 { fn from(degrees: Degrees) -> Self { Self::from(degrees.0) } } impl Mul for Degrees { type Output = Degrees; fn mul(self, rhs: f32) -> Self::Output { Self(self.0 * rhs) } } impl num_traits::FromPrimitive for Degrees { fn from_i64(n: i64) -> Option { Some(Self(n as f32)) } fn from_u64(n: u64) -> Option { Some(Self(n as f32)) } fn from_f64(n: f64) -> Option { Some(Self(n as f32)) } } /// Radians #[derive(Debug, Copy, Clone, PartialEq, PartialOrd)] pub struct Radians(pub f32); impl Radians { /// The range of radians of a circle. pub const RANGE: RangeInclusive = Self(0.0)..=Self(2.0 * PI); /// The amount of radians in half a circle. pub const PI: Self = Self(PI); /// Calculates the line in which the angle intercepts the `bounds`. pub fn to_distance(&self, bounds: &Rectangle) -> (Point, Point) { let angle = self.0 - FRAC_PI_2; let r = Vector::new(f32::cos(angle), f32::sin(angle)); let distance_to_rect = f32::max( f32::abs(r.x * bounds.width / 2.0), f32::abs(r.y * bounds.height / 2.0), ); let start = bounds.center() - r * distance_to_rect; let end = bounds.center() + r * distance_to_rect; (start, end) } } impl From for Radians { fn from(degrees: Degrees) -> Self { Self(degrees.0 * PI / 180.0) } } impl From for Radians { fn from(radians: f32) -> Self { Self(radians) } } impl From for Radians { fn from(radians: u8) -> Self { Self(f32::from(radians)) } } impl From for f32 { fn from(radians: Radians) -> Self { radians.0 } } impl From for f64 { fn from(radians: Radians) -> Self { Self::from(radians.0) } } impl num_traits::FromPrimitive for Radians { fn from_i64(n: i64) -> Option { Some(Self(n as f32)) } fn from_u64(n: u64) -> Option { Some(Self(n as f32)) } fn from_f64(n: f64) -> Option { Some(Self(n as f32)) } } impl Sub for Radians { type Output = Self; fn sub(self, rhs: Self) -> Self::Output { Self(self.0 - rhs.0) } } impl SubAssign for Radians { fn sub_assign(&mut self, rhs: Self) { self.0 = self.0 - rhs.0; } } impl Add for Radians { type Output = Self; fn add(self, rhs: Self) -> Self::Output { Self(self.0 + rhs.0) } } impl Add for Radians { type Output = Self; fn add(self, rhs: Degrees) -> Self::Output { Self(self.0 + rhs.0.to_radians()) } } impl AddAssign for Radians { fn add_assign(&mut self, rhs: Radians) { self.0 = self.0 + rhs.0; } } impl Mul for Radians { type Output = Self; fn mul(self, rhs: Radians) -> Self::Output { Radians(self.0 * rhs.0) } } impl Mul for Radians { type Output = Self; fn mul(self, rhs: f32) -> Self::Output { Self(self.0 * rhs) } } impl Mul for f32 { type Output = Radians; fn mul(self, rhs: Radians) -> Self::Output { Radians(self * rhs.0) } } impl Div for Radians { type Output = Self; fn div(self, rhs: f32) -> Self::Output { Radians(self.0 / rhs) } } impl Div for Radians { type Output = Self; fn div(self, rhs: Self) -> Self::Output { Self(self.0 / rhs.0) } } impl Rem for Radians { type Output = Self; fn rem(self, rhs: Self) -> Self::Output { Self(self.0 % rhs.0) } } impl PartialEq for Radians { fn eq(&self, other: &f32) -> bool { self.0.eq(other) } } impl PartialOrd for Radians { fn partial_cmp(&self, other: &f32) -> Option { self.0.partial_cmp(other) } } impl Display for Radians { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!(f, "{} rad", self.0) } }