diff options
Diffstat (limited to 'pure/src/lib.rs')
-rw-r--r-- | pure/src/lib.rs | 292 |
1 files changed, 0 insertions, 292 deletions
diff --git a/pure/src/lib.rs b/pure/src/lib.rs deleted file mode 100644 index 9c5f3bc8..00000000 --- a/pure/src/lib.rs +++ /dev/null @@ -1,292 +0,0 @@ -//! Stateless, pure widgets for iced. -//! -//! # The Elm Architecture, purity, and continuity -//! As you may know, applications made with `iced` use [The Elm Architecture]. -//! -//! In a nutshell, this architecture defines the initial state of the application, a way to `view` it, and a way to `update` it after a user interaction. The `update` logic is called after a meaningful user interaction, which in turn updates the state of the application. Then, the `view` logic is executed to redisplay the application. -//! -//! Since `view` logic is only run after an `update`, all of the mutations to the application state must only happen in the `update` logic. If the application state changes anywhere else, the `view` logic will not be rerun and, therefore, the previously generated `view` may stay outdated. -//! -//! However, the `Application` trait in `iced` defines `view` as: -//! -//! ```ignore -//! pub trait Application { -//! fn view(&mut self) -> Element<Self::Message>; -//! } -//! ``` -//! -//! As a consequence, the application state can be mutated in `view` logic. The `view` logic in `iced` is __impure__. -//! -//! This impurity is necessary because `iced` puts the burden of widget __continuity__ on its users. In other words, it's up to you to provide `iced` with the internal state of each widget every time `view` is called. -//! -//! If we take a look at the classic `counter` example: -//! -//! ```ignore -//! struct Counter { -//! value: i32, -//! increment_button: button::State, -//! decrement_button: button::State, -//! } -//! -//! // ... -//! -//! impl Counter { -//! pub fn view(&mut self) -> Column<Message> { -//! Column::new() -//! .push( -//! Button::new(&mut self.increment_button, Text::new("+")) -//! .on_press(Message::IncrementPressed), -//! ) -//! .push(Text::new(self.value.to_string()).size(50)) -//! .push( -//! Button::new(&mut self.decrement_button, Text::new("-")) -//! .on_press(Message::DecrementPressed), -//! ) -//! } -//! } -//! ``` -//! -//! We can see how we need to keep track of the `button::State` of each `Button` in our `Counter` state and provide a mutable reference to the widgets in our `view` logic. The widgets produced by `view` are __stateful__. -//! -//! While this approach forces users to keep track of widget state and causes impurity, I originally chose it because it allows `iced` to directly consume the widget tree produced by `view`. Since there is no internal state decoupled from `view` maintained by the runtime, `iced` does not need to compare (e.g. reconciliate) widget trees in order to ensure continuity. -//! -//! # Stateless widgets -//! As the library matures, the need for some kind of persistent widget data (see #553) between `view` calls becomes more apparent (e.g. incremental rendering, animations, accessibility, etc.). -//! -//! If we are going to end up having persistent widget data anyways... There is no reason to have impure, stateful widgets anymore! -//! -//! And so I started exploring and ended up creating a new subcrate called `iced_pure`, which introduces a completely stateless implementation for every widget in `iced`. -//! -//! With the help of this crate, we can now write a pure `counter` example: -//! -//! ```ignore -//! struct Counter { -//! value: i32, -//! } -//! -//! // ... -//! -//! impl Counter { -//! fn view(&self) -> Column<Message> { -//! Column::new() -//! .push(Button::new("Increment").on_press(Message::IncrementPressed)) -//! .push(Text::new(self.value.to_string()).size(50)) -//! .push(Button::new("Decrement").on_press(Message::DecrementPressed)) -//! } -//! } -//! ``` -//! -//! Notice how we no longer need to keep track of the `button::State`! The widgets in `iced_pure` do not take any mutable application state in `view`. They are __stateless__ widgets. As a consequence, we do not need mutable access to `self` in `view` anymore. `view` becomes __pure__. -//! -//! [The Elm Architecture]: https://guide.elm-lang.org/architecture/ -#![doc( - html_logo_url = "https://raw.githubusercontent.com/iced-rs/iced/9ab6923e943f784985e9ef9ca28b10278297225d/docs/logo.svg" -)] -#![deny( - missing_docs, - unused_results, - clippy::extra_unused_lifetimes, - clippy::from_over_into, - clippy::needless_borrow, - clippy::new_without_default, - clippy::useless_conversion -)] -#![forbid(rust_2018_idioms, unsafe_code)] -#![allow(clippy::inherent_to_string, clippy::type_complexity)] -#![cfg_attr(docsrs, feature(doc_cfg))] - -pub mod flex; -pub mod helpers; -pub mod overlay; -pub mod widget; - -mod element; - -pub use element::Element; -pub use helpers::*; -pub use widget::Widget; - -use iced_native::event::{self, Event}; -use iced_native::layout::{self, Layout}; -use iced_native::mouse; -use iced_native::renderer; -use iced_native::{Clipboard, Length, Point, Rectangle, Shell}; - -/// A bridge between impure and pure widgets. -/// -/// If you already have an existing `iced` application, you do not need to switch completely to the new traits in order to benefit from the `pure` module. Instead, you can leverage the new `Pure` widget to include `pure` widgets in your impure `Application`. -/// -/// For instance, let's say we want to use our pure `Counter` in an impure application: -/// -/// ```ignore -/// use iced_pure::{self, Pure}; -/// -/// struct Impure { -/// state: pure::State, -/// counter: Counter, -/// } -/// -/// impl Sandbox for Impure { -/// // ... -/// -/// pub fn view(&mut self) -> Element<Self::Message> { -/// Pure::new(&mut self.state, self.counter.view()).into() -/// } -/// } -/// ``` -/// -/// [`Pure`] acts as a bridge between pure and impure widgets. It is completely opt-in and can be used to slowly migrate your application to the new architecture. -/// -/// The purification of your application may trigger a bunch of important refactors, since it's far easier to keep your data decoupled from the GUI state with stateless widgets. For this reason, I recommend starting small in the most nested views of your application and slowly expand the purity upwards. -pub struct Pure<'a, Message, Renderer> { - state: &'a mut State, - element: Element<'a, Message, Renderer>, -} - -impl<'a, Message, Renderer> Pure<'a, Message, Renderer> -where - Message: 'a, - Renderer: iced_native::Renderer + 'a, -{ - /// Creates a new [`Pure`] widget with the given [`State`] and impure [`Element`]. - pub fn new( - state: &'a mut State, - content: impl Into<Element<'a, Message, Renderer>>, - ) -> Self { - let element = content.into(); - state.diff(&element); - - Self { state, element } - } -} - -/// The internal state of a [`Pure`] widget. -pub struct State { - state_tree: widget::Tree, -} - -impl Default for State { - fn default() -> Self { - Self::new() - } -} - -impl State { - /// Creates a new [`State`] for a [`Pure`] widget. - pub fn new() -> Self { - Self { - state_tree: widget::Tree::empty(), - } - } - - fn diff<Message, Renderer>( - &mut self, - new_element: &Element<'_, Message, Renderer>, - ) where - Renderer: iced_native::Renderer, - { - self.state_tree.diff(new_element); - } -} - -impl<'a, Message, Renderer> iced_native::Widget<Message, Renderer> - for Pure<'a, Message, Renderer> -where - Message: 'a, - Renderer: iced_native::Renderer + 'a, -{ - fn width(&self) -> Length { - self.element.as_widget().width() - } - - fn height(&self) -> Length { - self.element.as_widget().height() - } - - fn layout( - &self, - renderer: &Renderer, - limits: &layout::Limits, - ) -> layout::Node { - self.element.as_widget().layout(renderer, limits) - } - - fn on_event( - &mut self, - event: Event, - layout: Layout<'_>, - cursor_position: Point, - renderer: &Renderer, - clipboard: &mut dyn Clipboard, - shell: &mut Shell<'_, Message>, - ) -> event::Status { - self.element.as_widget_mut().on_event( - &mut self.state.state_tree, - event, - layout, - cursor_position, - renderer, - clipboard, - shell, - ) - } - - fn draw( - &self, - renderer: &mut Renderer, - theme: &Renderer::Theme, - style: &renderer::Style, - layout: Layout<'_>, - cursor_position: Point, - viewport: &Rectangle, - ) { - self.element.as_widget().draw( - &self.state.state_tree, - renderer, - theme, - style, - layout, - cursor_position, - viewport, - ) - } - - fn mouse_interaction( - &self, - layout: Layout<'_>, - cursor_position: Point, - viewport: &Rectangle, - renderer: &Renderer, - ) -> mouse::Interaction { - self.element.as_widget().mouse_interaction( - &self.state.state_tree, - layout, - cursor_position, - viewport, - renderer, - ) - } - - fn overlay( - &mut self, - layout: Layout<'_>, - renderer: &Renderer, - ) -> Option<overlay::Element<'_, Message, Renderer>> { - self.element.as_widget_mut().overlay( - &mut self.state.state_tree, - layout, - renderer, - ) - } -} - -impl<'a, Message, Renderer> From<Pure<'a, Message, Renderer>> - for iced_native::Element<'a, Message, Renderer> -where - Message: 'a, - Renderer: iced_native::Renderer + 'a, -{ - fn from(pure: Pure<'a, Message, Renderer>) -> Self { - Self::new(pure) - } -} |