summaryrefslogtreecommitdiffstats
path: root/pure/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to 'pure/src/lib.rs')
-rw-r--r--pure/src/lib.rs292
1 files changed, 0 insertions, 292 deletions
diff --git a/pure/src/lib.rs b/pure/src/lib.rs
deleted file mode 100644
index 9c5f3bc8..00000000
--- a/pure/src/lib.rs
+++ /dev/null
@@ -1,292 +0,0 @@
-//! Stateless, pure widgets for iced.
-//!
-//! # The Elm Architecture, purity, and continuity
-//! As you may know, applications made with `iced` use [The Elm Architecture].
-//!
-//! In a nutshell, this architecture defines the initial state of the application, a way to `view` it, and a way to `update` it after a user interaction. The `update` logic is called after a meaningful user interaction, which in turn updates the state of the application. Then, the `view` logic is executed to redisplay the application.
-//!
-//! Since `view` logic is only run after an `update`, all of the mutations to the application state must only happen in the `update` logic. If the application state changes anywhere else, the `view` logic will not be rerun and, therefore, the previously generated `view` may stay outdated.
-//!
-//! However, the `Application` trait in `iced` defines `view` as:
-//!
-//! ```ignore
-//! pub trait Application {
-//! fn view(&mut self) -> Element<Self::Message>;
-//! }
-//! ```
-//!
-//! As a consequence, the application state can be mutated in `view` logic. The `view` logic in `iced` is __impure__.
-//!
-//! This impurity is necessary because `iced` puts the burden of widget __continuity__ on its users. In other words, it's up to you to provide `iced` with the internal state of each widget every time `view` is called.
-//!
-//! If we take a look at the classic `counter` example:
-//!
-//! ```ignore
-//! struct Counter {
-//! value: i32,
-//! increment_button: button::State,
-//! decrement_button: button::State,
-//! }
-//!
-//! // ...
-//!
-//! impl Counter {
-//! pub fn view(&mut self) -> Column<Message> {
-//! Column::new()
-//! .push(
-//! Button::new(&mut self.increment_button, Text::new("+"))
-//! .on_press(Message::IncrementPressed),
-//! )
-//! .push(Text::new(self.value.to_string()).size(50))
-//! .push(
-//! Button::new(&mut self.decrement_button, Text::new("-"))
-//! .on_press(Message::DecrementPressed),
-//! )
-//! }
-//! }
-//! ```
-//!
-//! We can see how we need to keep track of the `button::State` of each `Button` in our `Counter` state and provide a mutable reference to the widgets in our `view` logic. The widgets produced by `view` are __stateful__.
-//!
-//! While this approach forces users to keep track of widget state and causes impurity, I originally chose it because it allows `iced` to directly consume the widget tree produced by `view`. Since there is no internal state decoupled from `view` maintained by the runtime, `iced` does not need to compare (e.g. reconciliate) widget trees in order to ensure continuity.
-//!
-//! # Stateless widgets
-//! As the library matures, the need for some kind of persistent widget data (see #553) between `view` calls becomes more apparent (e.g. incremental rendering, animations, accessibility, etc.).
-//!
-//! If we are going to end up having persistent widget data anyways... There is no reason to have impure, stateful widgets anymore!
-//!
-//! And so I started exploring and ended up creating a new subcrate called `iced_pure`, which introduces a completely stateless implementation for every widget in `iced`.
-//!
-//! With the help of this crate, we can now write a pure `counter` example:
-//!
-//! ```ignore
-//! struct Counter {
-//! value: i32,
-//! }
-//!
-//! // ...
-//!
-//! impl Counter {
-//! fn view(&self) -> Column<Message> {
-//! Column::new()
-//! .push(Button::new("Increment").on_press(Message::IncrementPressed))
-//! .push(Text::new(self.value.to_string()).size(50))
-//! .push(Button::new("Decrement").on_press(Message::DecrementPressed))
-//! }
-//! }
-//! ```
-//!
-//! Notice how we no longer need to keep track of the `button::State`! The widgets in `iced_pure` do not take any mutable application state in `view`. They are __stateless__ widgets. As a consequence, we do not need mutable access to `self` in `view` anymore. `view` becomes __pure__.
-//!
-//! [The Elm Architecture]: https://guide.elm-lang.org/architecture/
-#![doc(
- html_logo_url = "https://raw.githubusercontent.com/iced-rs/iced/9ab6923e943f784985e9ef9ca28b10278297225d/docs/logo.svg"
-)]
-#![deny(
- missing_docs,
- unused_results,
- clippy::extra_unused_lifetimes,
- clippy::from_over_into,
- clippy::needless_borrow,
- clippy::new_without_default,
- clippy::useless_conversion
-)]
-#![forbid(rust_2018_idioms, unsafe_code)]
-#![allow(clippy::inherent_to_string, clippy::type_complexity)]
-#![cfg_attr(docsrs, feature(doc_cfg))]
-
-pub mod flex;
-pub mod helpers;
-pub mod overlay;
-pub mod widget;
-
-mod element;
-
-pub use element::Element;
-pub use helpers::*;
-pub use widget::Widget;
-
-use iced_native::event::{self, Event};
-use iced_native::layout::{self, Layout};
-use iced_native::mouse;
-use iced_native::renderer;
-use iced_native::{Clipboard, Length, Point, Rectangle, Shell};
-
-/// A bridge between impure and pure widgets.
-///
-/// If you already have an existing `iced` application, you do not need to switch completely to the new traits in order to benefit from the `pure` module. Instead, you can leverage the new `Pure` widget to include `pure` widgets in your impure `Application`.
-///
-/// For instance, let's say we want to use our pure `Counter` in an impure application:
-///
-/// ```ignore
-/// use iced_pure::{self, Pure};
-///
-/// struct Impure {
-/// state: pure::State,
-/// counter: Counter,
-/// }
-///
-/// impl Sandbox for Impure {
-/// // ...
-///
-/// pub fn view(&mut self) -> Element<Self::Message> {
-/// Pure::new(&mut self.state, self.counter.view()).into()
-/// }
-/// }
-/// ```
-///
-/// [`Pure`] acts as a bridge between pure and impure widgets. It is completely opt-in and can be used to slowly migrate your application to the new architecture.
-///
-/// The purification of your application may trigger a bunch of important refactors, since it's far easier to keep your data decoupled from the GUI state with stateless widgets. For this reason, I recommend starting small in the most nested views of your application and slowly expand the purity upwards.
-pub struct Pure<'a, Message, Renderer> {
- state: &'a mut State,
- element: Element<'a, Message, Renderer>,
-}
-
-impl<'a, Message, Renderer> Pure<'a, Message, Renderer>
-where
- Message: 'a,
- Renderer: iced_native::Renderer + 'a,
-{
- /// Creates a new [`Pure`] widget with the given [`State`] and impure [`Element`].
- pub fn new(
- state: &'a mut State,
- content: impl Into<Element<'a, Message, Renderer>>,
- ) -> Self {
- let element = content.into();
- state.diff(&element);
-
- Self { state, element }
- }
-}
-
-/// The internal state of a [`Pure`] widget.
-pub struct State {
- state_tree: widget::Tree,
-}
-
-impl Default for State {
- fn default() -> Self {
- Self::new()
- }
-}
-
-impl State {
- /// Creates a new [`State`] for a [`Pure`] widget.
- pub fn new() -> Self {
- Self {
- state_tree: widget::Tree::empty(),
- }
- }
-
- fn diff<Message, Renderer>(
- &mut self,
- new_element: &Element<'_, Message, Renderer>,
- ) where
- Renderer: iced_native::Renderer,
- {
- self.state_tree.diff(new_element);
- }
-}
-
-impl<'a, Message, Renderer> iced_native::Widget<Message, Renderer>
- for Pure<'a, Message, Renderer>
-where
- Message: 'a,
- Renderer: iced_native::Renderer + 'a,
-{
- fn width(&self) -> Length {
- self.element.as_widget().width()
- }
-
- fn height(&self) -> Length {
- self.element.as_widget().height()
- }
-
- fn layout(
- &self,
- renderer: &Renderer,
- limits: &layout::Limits,
- ) -> layout::Node {
- self.element.as_widget().layout(renderer, limits)
- }
-
- fn on_event(
- &mut self,
- event: Event,
- layout: Layout<'_>,
- cursor_position: Point,
- renderer: &Renderer,
- clipboard: &mut dyn Clipboard,
- shell: &mut Shell<'_, Message>,
- ) -> event::Status {
- self.element.as_widget_mut().on_event(
- &mut self.state.state_tree,
- event,
- layout,
- cursor_position,
- renderer,
- clipboard,
- shell,
- )
- }
-
- fn draw(
- &self,
- renderer: &mut Renderer,
- theme: &Renderer::Theme,
- style: &renderer::Style,
- layout: Layout<'_>,
- cursor_position: Point,
- viewport: &Rectangle,
- ) {
- self.element.as_widget().draw(
- &self.state.state_tree,
- renderer,
- theme,
- style,
- layout,
- cursor_position,
- viewport,
- )
- }
-
- fn mouse_interaction(
- &self,
- layout: Layout<'_>,
- cursor_position: Point,
- viewport: &Rectangle,
- renderer: &Renderer,
- ) -> mouse::Interaction {
- self.element.as_widget().mouse_interaction(
- &self.state.state_tree,
- layout,
- cursor_position,
- viewport,
- renderer,
- )
- }
-
- fn overlay(
- &mut self,
- layout: Layout<'_>,
- renderer: &Renderer,
- ) -> Option<overlay::Element<'_, Message, Renderer>> {
- self.element.as_widget_mut().overlay(
- &mut self.state.state_tree,
- layout,
- renderer,
- )
- }
-}
-
-impl<'a, Message, Renderer> From<Pure<'a, Message, Renderer>>
- for iced_native::Element<'a, Message, Renderer>
-where
- Message: 'a,
- Renderer: iced_native::Renderer + 'a,
-{
- fn from(pure: Pure<'a, Message, Renderer>) -> Self {
- Self::new(pure)
- }
-}