use crate::Transformation;
use std::cell::RefCell;
use std::collections::HashMap;
use std::mem;
use std::rc::Rc;
pub struct Pipeline {
cache: RefCell<HashMap<String, Memory>>,
pipeline: wgpu::RenderPipeline,
transform: wgpu::Buffer,
vertices: wgpu::Buffer,
indices: wgpu::Buffer,
instances: wgpu::Buffer,
constants: wgpu::BindGroup,
texture_layout: wgpu::BindGroupLayout,
}
impl Pipeline {
pub fn new(device: &wgpu::Device) -> Self {
let sampler = device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Linear,
lod_min_clamp: -100.0,
lod_max_clamp: 100.0,
compare_function: wgpu::CompareFunction::Always,
});
let constant_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
bindings: &[
wgpu::BindGroupLayoutBinding {
binding: 0,
visibility: wgpu::ShaderStage::VERTEX,
ty: wgpu::BindingType::UniformBuffer { dynamic: false },
},
wgpu::BindGroupLayoutBinding {
binding: 1,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::Sampler,
},
],
});
let matrix: [f32; 16] = Transformation::identity().into();
let transform_buffer = device
.create_buffer_mapped(
16,
wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST,
)
.fill_from_slice(&matrix[..]);
let constant_bind_group =
device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &constant_layout,
bindings: &[
wgpu::Binding {
binding: 0,
resource: wgpu::BindingResource::Buffer {
buffer: &transform_buffer,
range: 0..64,
},
},
wgpu::Binding {
binding: 1,
resource: wgpu::BindingResource::Sampler(&sampler),
},
],
});
let texture_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
bindings: &[wgpu::BindGroupLayoutBinding {
binding: 0,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::SampledTexture {
multisampled: false,
dimension: wgpu::TextureViewDimension::D2,
},
}],
});
let layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
bind_group_layouts: &[&constant_layout, &texture_layout],
});
let vs = include_bytes!("shader/image.vert.spv");
let vs_module = device.create_shader_module(
&wgpu::read_spirv(std::io::Cursor::new(&vs[..]))
.expect("Read image vertex shader as SPIR-V"),
);
let fs = include_bytes!("shader/image.frag.spv");
let fs_module = device.create_shader_module(
&wgpu::read_spirv(std::io::Cursor::new(&fs[..]))
.expect("Read image fragment shader as SPIR-V"),
);
let pipeline =
device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
layout: &layout,
vertex_stage: wgpu::ProgrammableStageDescriptor {
module: &vs_module,
entry_point: "main",
},
fragment_stage: Some(wgpu::ProgrammableStageDescriptor {
module: &fs_module,
entry_point: "main",
}),
rasterization_state: Some(wgpu::RasterizationStateDescriptor {
front_face: wgpu::FrontFace::Cw,
cull_mode: wgpu::CullMode::None,
depth_bias: 0,
depth_bias_slope_scale: 0.0,
depth_bias_clamp: 0.0,
}),
primitive_topology: wgpu::PrimitiveTopology::TriangleList,
color_states: &[wgpu::ColorStateDescriptor {
format: wgpu::TextureFormat::Bgra8UnormSrgb,
color_blend: wgpu::BlendDescriptor {
src_factor: wgpu::BlendFactor::SrcAlpha,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
alpha_blend: wgpu::BlendDescriptor {
src_factor: wgpu::BlendFactor::One,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
write_mask: wgpu::ColorWrite::ALL,
}],
depth_stencil_state: None,
index_format: wgpu::IndexFormat::Uint16,
vertex_buffers: &[
wgpu::VertexBufferDescriptor {
stride: mem::size_of::<Vertex>() as u64,
step_mode: wgpu::InputStepMode::Vertex,
attributes: &[wgpu::VertexAttributeDescriptor {
shader_location: 0,
format: wgpu::VertexFormat::Float2,
offset: 0,
}],
},
wgpu::VertexBufferDescriptor {
stride: mem::size_of::<Instance>() as u64,
step_mode: wgpu::InputStepMode::Instance,
attributes: &[
wgpu::VertexAttributeDescriptor {
shader_location: 1,
format: wgpu::VertexFormat::Float2,
offset: 0,
},
wgpu::VertexAttributeDescriptor {
shader_location: 2,
format: wgpu::VertexFormat::Float2,
offset: 4 * 2,
},
],
},
],
sample_count: 1,
sample_mask: !0,
alpha_to_coverage_enabled: false,
});
let vertices = device
.create_buffer_mapped(QUAD_VERTS.len(), wgpu::BufferUsage::VERTEX)
.fill_from_slice(&QUAD_VERTS);
let indices = device
.create_buffer_mapped(QUAD_INDICES.len(), wgpu::BufferUsage::INDEX)
.fill_from_slice(&QUAD_INDICES);
let instances = device.create_buffer(&wgpu::BufferDescriptor {
size: mem::size_of::<Instance>() as u64,
usage: wgpu::BufferUsage::VERTEX | wgpu::BufferUsage::COPY_DST,
});
Pipeline {
cache: RefCell::new(HashMap::new()),
pipeline,
transform: transform_buffer,
vertices,
indices,
instances,
constants: constant_bind_group,
texture_layout,
}
}
pub fn dimensions(&self, path: &str) -> (u32, u32) {
self.load(path);
self.cache.borrow().get(path).unwrap().dimensions()
}
fn load(&self, path: &str) {
if !self.cache.borrow().contains_key(path) {
let image = image::open(path).expect("Load image").to_bgra();
self.cache
.borrow_mut()
.insert(path.to_string(), Memory::Host { image });
}
}
pub fn draw(
&mut self,
device: &mut wgpu::Device,
encoder: &mut wgpu::CommandEncoder,
instances: &[Image],
transformation: Transformation,
target: &wgpu::TextureView,
) {
let matrix: [f32; 16] = transformation.into();
let transform_buffer = device
.create_buffer_mapped(16, wgpu::BufferUsage::COPY_SRC)
.fill_from_slice(&matrix[..]);
encoder.copy_buffer_to_buffer(
&transform_buffer,
0,
&self.transform,
0,
16 * 4,
);
// TODO: Batch draw calls using a texture atlas
// Guillotière[1] by @nical can help us a lot here.
//
// [1]: https://github.com/nical/guillotiere
for image in instances {
self.load(&image.path);
let texture = self
.cache
.borrow_mut()
.get_mut(&image.path)
.unwrap()
.upload(device, encoder, &self.texture_layout);
let instance_buffer = device
.create_buffer_mapped(1, wgpu::BufferUsage::COPY_SRC)
.fill_from_slice(&[Instance {
position: image.position,
scale: image.scale,
}]);
encoder.copy_buffer_to_buffer(
&instance_buffer,
0,
&self.instances,
0,
mem::size_of::<Image>() as u64,
);
{
let mut render_pass =
encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
color_attachments: &[
wgpu::RenderPassColorAttachmentDescriptor {
attachment: target,
resolve_target: None,
load_op: wgpu::LoadOp::Load,
store_op: wgpu::StoreOp::Store,
clear_color: wgpu::Color {
r: 0.0,
g: 0.0,
b: 0.0,
a: 0.0,
},
},
],
depth_stencil_attachment: None,
});
render_pass.set_pipeline(&self.pipeline);
render_pass.set_bind_group(0, &self.constants, &[]);
render_pass.set_bind_group(1, &texture, &[]);
render_pass.set_index_buffer(&self.indices, 0);
render_pass.set_vertex_buffers(
0,
&[(&self.vertices, 0), (&self.instances, 0)],
);
render_pass.draw_indexed(
0..QUAD_INDICES.len() as u32,
0,
0..1 as u32,
);
}
}
}
}
enum Memory {
Host {
image: image::ImageBuffer<image::Bgra<u8>, Vec<u8>>,
},
Device {
bind_group: Rc<wgpu::BindGroup>,
width: u32,
height: u32,
},
}
impl Memory {
fn dimensions(&self) -> (u32, u32) {
match self {
Memory::Host { image } => image.dimensions(),
Memory::Device { width, height, .. } => (*width, *height),
}
}
fn upload(
&mut self,
device: &wgpu::Device,
encoder: &mut wgpu::CommandEncoder,
texture_layout: &wgpu::BindGroupLayout,
) -> Rc<wgpu::BindGroup> {
match self {
Memory::Host { image } => {
let (width, height) = image.dimensions();
let extent = wgpu::Extent3d {
width,
height,
depth: 1,
};
let texture = device.create_texture(&wgpu::TextureDescriptor {
size: extent,
array_layer_count: 1,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Bgra8UnormSrgb,
usage: wgpu::TextureUsage::COPY_DST
| wgpu::TextureUsage::SAMPLED,
});
let slice = image.clone().into_raw();
let temp_buf = device
.create_buffer_mapped(
slice.len(),
wgpu::BufferUsage::COPY_SRC,
)
.fill_from_slice(&slice[..]);
encoder.copy_buffer_to_texture(
wgpu::BufferCopyView {
buffer: &temp_buf,
offset: 0,
row_pitch: 4 * width as u32,
image_height: height as u32,
},
wgpu::TextureCopyView {
texture: &texture,
array_layer: 0,
mip_level: 0,
origin: wgpu::Origin3d {
x: 0.0,
y: 0.0,
z: 0.0,
},
},
extent,
);
let bind_group =
device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: texture_layout,
bindings: &[wgpu::Binding {
binding: 0,
resource: wgpu::BindingResource::TextureView(
&texture.create_default_view(),
),
}],
});
let bind_group = Rc::new(bind_group);
*self = Memory::Device {
bind_group: bind_group.clone(),
width,
height,
};
bind_group
}
Memory::Device { bind_group, .. } => bind_group.clone(),
}
}
}
pub struct Image {
pub path: String,
pub position: [f32; 2],
pub scale: [f32; 2],
}
#[derive(Clone, Copy)]
pub struct Vertex {
_position: [f32; 2],
}
const QUAD_INDICES: [u16; 6] = [0, 1, 2, 0, 2, 3];
const QUAD_VERTS: [Vertex; 4] = [
Vertex {
_position: [0.0, 0.0],
},
Vertex {
_position: [1.0, 0.0],
},
Vertex {
_position: [1.0, 1.0],
},
Vertex {
_position: [0.0, 1.0],
},
];
#[derive(Clone, Copy)]
struct Instance {
position: [f32; 2],
scale: [f32; 2],
}