//! Draw 2D graphics for your users.
//!
//! A [`Canvas`] widget can be used to draw different kinds of 2D shapes in a
//! [`Frame`]. It can be used for animation, data visualization, game graphics,
//! and more!
//!
//! [`Canvas`]: struct.Canvas.html
//! [`Frame`]: struct.Frame.html
use crate::{Backend, Defaults, Primitive, Renderer};
use iced_native::layout;
use iced_native::mouse;
use iced_native::{
Clipboard, Element, Hasher, Layout, Length, Point, Rectangle, Size, Vector,
Widget,
};
use std::hash::Hash;
use std::marker::PhantomData;
pub mod event;
pub mod path;
mod cache;
mod cursor;
mod fill;
mod frame;
mod geometry;
mod program;
mod stroke;
mod text;
pub use cache::Cache;
pub use cursor::Cursor;
pub use event::Event;
pub use fill::{Fill, FillRule};
pub use frame::Frame;
pub use geometry::Geometry;
pub use path::Path;
pub use program::Program;
pub use stroke::{LineCap, LineJoin, Stroke};
pub use text::Text;
/// A widget capable of drawing 2D graphics.
///
/// [`Canvas`]: struct.Canvas.html
///
/// # Examples
/// The repository has a couple of [examples] showcasing how to use a
/// [`Canvas`]:
///
/// - [`clock`], an application that uses the [`Canvas`] widget to draw a clock
/// and its hands to display the current time.
/// - [`game_of_life`], an interactive version of the Game of Life, invented by
/// John Conway.
/// - [`solar_system`], an animated solar system drawn using the [`Canvas`] widget
/// and showcasing how to compose different transforms.
///
/// [examples]: https://github.com/hecrj/iced/tree/master/examples
/// [`clock`]: https://github.com/hecrj/iced/tree/master/examples/clock
/// [`game_of_life`]: https://github.com/hecrj/iced/tree/master/examples/game_of_life
/// [`solar_system`]: https://github.com/hecrj/iced/tree/master/examples/solar_system
///
/// ## Drawing a simple circle
/// If you want to get a quick overview, here's how we can draw a simple circle:
///
/// ```no_run
/// # mod iced {
/// # pub use iced_graphics::canvas;
/// # pub use iced_native::{Color, Rectangle};
/// # }
/// use iced::canvas::{self, Canvas, Cursor, Fill, Frame, Geometry, Path, Program};
/// use iced::{Color, Rectangle};
///
/// // First, we define the data we need for drawing
/// #[derive(Debug)]
/// struct Circle {
/// radius: f32,
/// }
///
/// // Then, we implement the `Program` trait
/// impl Program<()> for Circle {
/// fn draw(&self, bounds: Rectangle, _cursor: Cursor) -> Vec<Geometry>{
/// // We prepare a new `Frame`
/// let mut frame = Frame::new(bounds.size());
///
/// // We create a `Path` representing a simple circle
/// let circle = Path::circle(frame.center(), self.radius);
///
/// // And fill it with some color
/// frame.fill(&circle, Color::BLACK);
///
/// // Finally, we produce the geometry
/// vec![frame.into_geometry()]
/// }
/// }
///
/// // Finally, we simply use our `Circle` to create the `Canvas`!
/// let canvas = Canvas::new(Circle { radius: 50.0 });
/// ```
#[derive(Debug)]
pub struct Canvas<Message, P: Program<Message>> {
width: Length,
height: Length,
program: P,
phantom: PhantomData<Message>,
}
impl<Message, P: Program<Message>> Canvas<Message, P> {
const DEFAULT_SIZE: u16 = 100;
/// Creates a new [`Canvas`].
///
/// [`Canvas`]: struct.Canvas.html
pub fn new(program: P) -> Self {
Canvas {
width: Length::Units(Self::DEFAULT_SIZE),
height: Length::Units(Self::DEFAULT_SIZE),
program,
phantom: PhantomData,
}
}
/// Sets the width of the [`Canvas`].
///
/// [`Canvas`]: struct.Canvas.html
pub fn width(mut self, width: Length) -> Self {
self.width = width;
self
}
/// Sets the height of the [`Canvas`].
///
/// [`Canvas`]: struct.Canvas.html
pub fn height(mut self, height: Length) -> Self {
self.height = height;
self
}
}
impl<Message, P, B> Widget<Message, Renderer<B>> for Canvas<Message, P>
where
P: Program<Message>,
B: Backend,
{
fn width(&self) -> Length {
self.width
}
fn height(&self) -> Length {
self.height
}
fn layout(
&self,
_renderer: &Renderer<B>,
limits: &layout::Limits,
) -> layout::Node {
let limits = limits.width(self.width).height(self.height);
let size = limits.resolve(Size::ZERO);
layout::Node::new(size)
}
fn on_event(
&mut self,
event: iced_native::Event,
layout: Layout<'_>,
cursor_position: Point,
messages: &mut Vec<Message>,
_renderer: &Renderer<B>,
_clipboard: Option<&dyn Clipboard>,
) -> event::Status {
let bounds = layout.bounds();
let canvas_event = match event {
iced_native::Event::Mouse(mouse_event) => {
Some(Event::Mouse(mouse_event))
}
iced_native::Event::Keyboard(keyboard_event) => {
Some(Event::Keyboard(keyboard_event))
}
_ => None,
};
let cursor = Cursor::from_window_position(cursor_position);
if let Some(canvas_event) = canvas_event {
let (event_status, message) =
self.program.update(canvas_event, bounds, cursor);
if let Some(message) = message {
messages.push(message);
}
return event_status;
}
event::Status::Ignored
}
fn draw(
&self,
_renderer: &mut Renderer<B>,
_defaults: &Defaults,
layout: Layout<'_>,
cursor_position: Point,
_viewport: &Rectangle,
) -> (Primitive, mouse::Interaction) {
let bounds = layout.bounds();
let translation = Vector::new(bounds.x, bounds.y);
let cursor = Cursor::from_window_position(cursor_position);
(
Primitive::Translate {
translation,
content: Box::new(Primitive::Group {
primitives: self
.program
.draw(bounds, cursor)
.into_iter()
.map(Geometry::into_primitive)
.collect(),
}),
},
self.program.mouse_interaction(bounds, cursor),
)
}
fn hash_layout(&self, state: &mut Hasher) {
struct Marker;
std::any::TypeId::of::<Marker>().hash(state);
self.width.hash(state);
self.height.hash(state);
}
}
impl<'a, Message, P, B> From<Canvas<Message, P>>
for Element<'a, Message, Renderer<B>>
where
Message: 'static,
P: Program<Message> + 'a,
B: Backend,
{
fn from(canvas: Canvas<Message, P>) -> Element<'a, Message, Renderer<B>> {
Element::new(canvas)
}
}