use crate::{Point, Radians, Size, Vector};
/// An axis-aligned rectangle.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
pub struct Rectangle<T = f32> {
/// X coordinate of the top-left corner.
pub x: T,
/// Y coordinate of the top-left corner.
pub y: T,
/// Width of the rectangle.
pub width: T,
/// Height of the rectangle.
pub height: T,
}
impl<T> Rectangle<T>
where
T: Default,
{
/// Creates a new [`Rectangle`] with its top-left corner at the origin
/// and with the provided [`Size`].
pub fn with_size(size: Size<T>) -> Self {
Self {
x: T::default(),
y: T::default(),
width: size.width,
height: size.height,
}
}
}
impl Rectangle<f32> {
/// A rectangle starting at [`Point::ORIGIN`] with infinite width and height.
pub const INFINITE: Self = Self::new(Point::ORIGIN, Size::INFINITY);
/// Creates a new [`Rectangle`] with its top-left corner in the given
/// [`Point`] and with the provided [`Size`].
pub const fn new(top_left: Point, size: Size) -> Self {
Self {
x: top_left.x,
y: top_left.y,
width: size.width,
height: size.height,
}
}
/// Returns the [`Point`] at the center of the [`Rectangle`].
pub fn center(&self) -> Point {
Point::new(self.center_x(), self.center_y())
}
/// Returns the X coordinate of the [`Point`] at the center of the
/// [`Rectangle`].
pub fn center_x(&self) -> f32 {
self.x + self.width / 2.0
}
/// Returns the Y coordinate of the [`Point`] at the center of the
/// [`Rectangle`].
pub fn center_y(&self) -> f32 {
self.y + self.height / 2.0
}
/// Returns the position of the top left corner of the [`Rectangle`].
pub fn position(&self) -> Point {
Point::new(self.x, self.y)
}
/// Returns the [`Size`] of the [`Rectangle`].
pub fn size(&self) -> Size {
Size::new(self.width, self.height)
}
/// Returns the area of the [`Rectangle`].
pub fn area(&self) -> f32 {
self.width * self.height
}
/// Returns true if the given [`Point`] is contained in the [`Rectangle`].
pub fn contains(&self, point: Point) -> bool {
self.x <= point.x
&& point.x < self.x + self.width
&& self.y <= point.y
&& point.y < self.y + self.height
}
/// Returns true if the current [`Rectangle`] is completely within the given
/// `container`.
pub fn is_within(&self, container: &Rectangle) -> bool {
container.contains(self.position())
&& container.contains(
self.position() + Vector::new(self.width, self.height),
)
}
/// Computes the intersection with the given [`Rectangle`].
pub fn intersection(
&self,
other: &Rectangle<f32>,
) -> Option<Rectangle<f32>> {
let x = self.x.max(other.x);
let y = self.y.max(other.y);
let lower_right_x = (self.x + self.width).min(other.x + other.width);
let lower_right_y = (self.y + self.height).min(other.y + other.height);
let width = lower_right_x - x;
let height = lower_right_y - y;
if width > 0.0 && height > 0.0 {
Some(Rectangle {
x,
y,
width,
height,
})
} else {
None
}
}
/// Returns whether the [`Rectangle`] intersects with the given one.
pub fn intersects(&self, other: &Self) -> bool {
self.intersection(other).is_some()
}
/// Computes the union with the given [`Rectangle`].
pub fn union(&self, other: &Self) -> Self {
let x = self.x.min(other.x);
let y = self.y.min(other.y);
let lower_right_x = (self.x + self.width).max(other.x + other.width);
let lower_right_y = (self.y + self.height).max(other.y + other.height);
let width = lower_right_x - x;
let height = lower_right_y - y;
Rectangle {
x,
y,
width,
height,
}
}
/// Snaps the [`Rectangle`] to __unsigned__ integer coordinates.
pub fn snap(self) -> Option<Rectangle<u32>> {
let width = self.width as u32;
let height = self.height as u32;
if width < 1 || height < 1 {
return None;
}
Some(Rectangle {
x: self.x as u32,
y: self.y as u32,
width,
height,
})
}
/// Expands the [`Rectangle`] a given amount.
pub fn expand(self, amount: f32) -> Self {
Self {
x: self.x - amount,
y: self.y - amount,
width: self.width + amount * 2.0,
height: self.height + amount * 2.0,
}
}
/// Rotates the [`Rectangle`] and returns the smallest [`Rectangle`]
/// containing it.
pub fn rotate(self, rotation: Radians) -> Self {
let size = self.size().rotate(rotation);
let position = Point::new(
self.center_x() - size.width / 2.0,
self.center_y() - size.height / 2.0,
);
Self::new(position, size)
}
}
impl std::ops::Mul<f32> for Rectangle<f32> {
type Output = Self;
fn mul(self, scale: f32) -> Self {
Self {
x: self.x * scale,
y: self.y * scale,
width: self.width * scale,
height: self.height * scale,
}
}
}
impl From<Rectangle<u32>> for Rectangle<f32> {
fn from(rectangle: Rectangle<u32>) -> Rectangle<f32> {
Rectangle {
x: rectangle.x as f32,
y: rectangle.y as f32,
width: rectangle.width as f32,
height: rectangle.height as f32,
}
}
}
impl<T> std::ops::Add<Vector<T>> for Rectangle<T>
where
T: std::ops::Add<Output = T>,
{
type Output = Rectangle<T>;
fn add(self, translation: Vector<T>) -> Self {
Rectangle {
x: self.x + translation.x,
y: self.y + translation.y,
..self
}
}
}
impl<T> std::ops::Sub<Vector<T>> for Rectangle<T>
where
T: std::ops::Sub<Output = T>,
{
type Output = Rectangle<T>;
fn sub(self, translation: Vector<T>) -> Self {
Rectangle {
x: self.x - translation.x,
y: self.y - translation.y,
..self
}
}
}
impl<T> std::ops::Mul<Vector<T>> for Rectangle<T>
where
T: std::ops::Mul<Output = T> + Copy,
{
type Output = Rectangle<T>;
fn mul(self, scale: Vector<T>) -> Self {
Rectangle {
x: self.x * scale.x,
y: self.y * scale.y,
width: self.width * scale.x,
height: self.height * scale.y,
}
}
}