use super::{get_template_source, CompileError, Integrations}; use crate::filters; use crate::heritage::{Context, Heritage}; use crate::input::{Source, TemplateInput}; use crate::parser::{parse, Cond, CondTest, Expr, Loop, Node, Target, When, Ws}; use proc_macro2::Span; use quote::{quote, ToTokens}; use std::collections::HashMap; use std::path::Path; use std::{cmp, hash, mem, str}; pub fn generate( input: &TemplateInput<'_>, contexts: &HashMap<&Path, Context<'_>, S>, heritage: Option<&Heritage<'_>>, integrations: Integrations, ) -> Result { Generator::new(input, contexts, heritage, integrations, MapChain::new()) .build(&contexts[input.path.as_path()]) } struct Generator<'a, S: std::hash::BuildHasher> { // The template input state: original struct AST and attributes input: &'a TemplateInput<'a>, // All contexts, keyed by the package-relative template path contexts: &'a HashMap<&'a Path, Context<'a>, S>, // The heritage contains references to blocks and their ancestry heritage: Option<&'a Heritage<'a>>, // What integrations need to be generated integrations: Integrations, // Variables accessible directly from the current scope (not redirected to context) locals: MapChain<'a, &'a str, LocalMeta>, // Suffix whitespace from the previous literal. Will be flushed to the // output buffer unless suppressed by whitespace suppression on the next // non-literal. next_ws: Option<&'a str>, // Whitespace suppression from the previous non-literal. Will be used to // determine whether to flush prefix whitespace from the next literal. skip_ws: bool, // If currently in a block, this will contain the name of a potential parent block super_block: Option<(&'a str, usize)>, // buffer for writable buf_writable: Vec>, // Counter for write! hash named arguments named: usize, } impl<'a, S: std::hash::BuildHasher> Generator<'a, S> { fn new<'n>( input: &'n TemplateInput<'_>, contexts: &'n HashMap<&'n Path, Context<'n>, S>, heritage: Option<&'n Heritage<'_>>, integrations: Integrations, locals: MapChain<'n, &'n str, LocalMeta>, ) -> Generator<'n, S> { Generator { input, contexts, heritage, integrations, locals, next_ws: None, skip_ws: false, super_block: None, buf_writable: vec![], named: 0, } } fn child(&mut self) -> Generator<'_, S> { let locals = MapChain::with_parent(&self.locals); Self::new( self.input, self.contexts, self.heritage, self.integrations, locals, ) } // Takes a Context and generates the relevant implementations. fn build(mut self, ctx: &'a Context<'_>) -> Result { let mut buf = Buffer::new(0); if !ctx.blocks.is_empty() { if let Some(parent) = self.input.parent { self.deref_to_parent(&mut buf, parent)?; } }; self.impl_template(ctx, &mut buf)?; self.impl_display(&mut buf)?; if self.integrations.actix { self.impl_actix_web_responder(&mut buf)?; } if self.integrations.axum { self.impl_axum_into_response(&mut buf)?; } if self.integrations.gotham { self.impl_gotham_into_response(&mut buf)?; } if self.integrations.mendes { self.impl_mendes_responder(&mut buf)?; } if self.integrations.rocket { self.impl_rocket_responder(&mut buf)?; } if self.integrations.tide { self.impl_tide_integrations(&mut buf)?; } if self.integrations.warp { self.impl_warp_reply(&mut buf)?; } Ok(buf.buf) } // Implement `Template` for the given context struct. fn impl_template( &mut self, ctx: &'a Context<'_>, buf: &mut Buffer, ) -> Result<(), CompileError> { self.write_header(buf, "::askama::Template", None)?; buf.writeln( "fn render_into(&self, writer: &mut (impl ::std::fmt::Write + ?Sized)) -> \ ::askama::Result<()> {", )?; // Make sure the compiler understands that the generated code depends on the template files. for path in self.contexts.keys() { // Skip the fake path of templates defined in rust source. let path_is_valid = match self.input.source { Source::Path(_) => true, Source::Source(_) => path != &self.input.path, }; if path_is_valid { let path = path.to_str().unwrap(); buf.writeln( "e! { include_bytes!(#path); } .to_string(), )?; } } let size_hint = if let Some(heritage) = self.heritage { self.handle(heritage.root, heritage.root.nodes, buf, AstLevel::Top) } else { self.handle(ctx, ctx.nodes, buf, AstLevel::Top) }?; self.flush_ws(Ws(false, false)); buf.writeln("::askama::Result::Ok(())")?; buf.writeln("}")?; buf.writeln("const EXTENSION: ::std::option::Option<&'static ::std::primitive::str> = ")?; buf.writeln(&format!("{:?}", self.input.extension()))?; buf.writeln(";")?; buf.writeln("const SIZE_HINT: ::std::primitive::usize = ")?; buf.writeln(&format!("{}", size_hint))?; buf.writeln(";")?; buf.writeln("const MIME_TYPE: &'static ::std::primitive::str = ")?; buf.writeln(&format!("{:?}", &self.input.mime_type))?; buf.writeln(";")?; buf.writeln("}")?; Ok(()) } // Implement `Deref` for an inheriting context struct. fn deref_to_parent( &mut self, buf: &mut Buffer, parent_type: &syn::Type, ) -> Result<(), CompileError> { self.write_header(buf, "::std::ops::Deref", None)?; buf.writeln(&format!( "type Target = {};", parent_type.into_token_stream() ))?; buf.writeln("#[inline]")?; buf.writeln("fn deref(&self) -> &Self::Target {")?; buf.writeln("&self._parent")?; buf.writeln("}")?; buf.writeln("}") } // Implement `Display` for the given context struct. fn impl_display(&mut self, buf: &mut Buffer) -> Result<(), CompileError> { self.write_header(buf, "::std::fmt::Display", None)?; buf.writeln("#[inline]")?; buf.writeln("fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {")?; buf.writeln("::askama::Template::render_into(self, f).map_err(|_| ::std::fmt::Error {})")?; buf.writeln("}")?; buf.writeln("}") } // Implement Actix-web's `Responder`. fn impl_actix_web_responder(&mut self, buf: &mut Buffer) -> Result<(), CompileError> { self.write_header(buf, "::actix_web::Responder", None)?; buf.writeln("type Body = ::actix_web::body::BoxBody;")?; buf.writeln("#[inline]")?; buf.writeln( "fn respond_to(self, _req: &::actix_web::HttpRequest) \ -> ::actix_web::web::HttpResponse {", )?; buf.writeln("::to_response(&self)")?; buf.writeln("}")?; buf.writeln("}") } // Implement Axum's `IntoResponse`. fn impl_axum_into_response(&mut self, buf: &mut Buffer) -> Result<(), CompileError> { self.write_header(buf, "::askama_axum::IntoResponse", None)?; buf.writeln("#[inline]")?; buf.writeln( "fn into_response(self)\ -> ::askama_axum::Response<::askama_axum::BoxBody> {", )?; let ext = self.input.extension().unwrap_or("txt"); buf.writeln(&format!("::askama_axum::into_response(&self, {:?})", ext))?; buf.writeln("}")?; buf.writeln("}") } // Implement gotham's `IntoResponse`. fn impl_gotham_into_response(&mut self, buf: &mut Buffer) -> Result<(), CompileError> { self.write_header(buf, "::askama_gotham::IntoResponse", None)?; buf.writeln("#[inline]")?; buf.writeln( "fn into_response(self, _state: &::askama_gotham::State)\ -> ::askama_gotham::Response<::askama_gotham::Body> {", )?; let ext = self.input.extension().unwrap_or("txt"); buf.writeln(&format!("::askama_gotham::respond(&self, {:?})", ext))?; buf.writeln("}")?; buf.writeln("}") } // Implement mendes' `Responder`. fn impl_mendes_responder(&mut self, buf: &mut Buffer) -> Result<(), CompileError> { let param = syn::parse_str("A: ::mendes::Application").unwrap(); let mut generics = self.input.ast.generics.clone(); generics.params.push(param); let (_, orig_ty_generics, _) = self.input.ast.generics.split_for_impl(); let (impl_generics, _, where_clause) = generics.split_for_impl(); let mut where_clause = match where_clause { Some(clause) => clause.clone(), None => syn::WhereClause { where_token: syn::Token![where](Span::call_site()), predicates: syn::punctuated::Punctuated::new(), }, }; where_clause .predicates .push(syn::parse_str("A::ResponseBody: From").unwrap()); where_clause .predicates .push(syn::parse_str("A::Error: From<::askama_mendes::Error>").unwrap()); buf.writeln( format!( "{} {} for {} {} {{", quote!(impl#impl_generics), "::mendes::application::Responder", self.input.ast.ident, quote!(#orig_ty_generics #where_clause), ) .as_ref(), )?; buf.writeln( "fn into_response(self, app: &A, req: &::mendes::http::request::Parts) \ -> ::mendes::http::Response {", )?; buf.writeln(&format!( "::askama_mendes::into_response(app, req, &self, {:?})", self.input.extension() ))?; buf.writeln("}")?; buf.writeln("}")?; Ok(()) } // Implement Rocket's `Responder`. fn impl_rocket_responder(&mut self, buf: &mut Buffer) -> Result<(), CompileError> { let lifetime = syn::Lifetime::new("'askama", Span::call_site()); let param = syn::GenericParam::Lifetime(syn::LifetimeDef::new(lifetime)); self.write_header( buf, "::askama_rocket::Responder<'askama>", Some(vec![param]), )?; buf.writeln("#[inline]")?; buf.writeln( "fn respond_to(self, _: &::askama_rocket::Request) \ -> ::askama_rocket::Result<'askama> {", )?; let ext = self.input.extension().unwrap_or("txt"); buf.writeln(&format!("::askama_rocket::respond(&self, {:?})", ext))?; buf.writeln("}")?; buf.writeln("}")?; Ok(()) } fn impl_tide_integrations(&mut self, buf: &mut Buffer) -> Result<(), CompileError> { let ext = self.input.extension().unwrap_or("txt"); self.write_header( buf, "::std::convert::TryInto<::askama_tide::tide::Body>", None, )?; buf.writeln( "type Error = ::askama_tide::askama::Error;\n\ #[inline]\n\ fn try_into(self) -> ::askama_tide::askama::Result<::askama_tide::tide::Body> {", )?; buf.writeln(&format!("::askama_tide::try_into_body(&self, {:?})", &ext))?; buf.writeln("}")?; buf.writeln("}")?; buf.writeln("#[allow(clippy::from_over_into)]")?; self.write_header(buf, "Into<::askama_tide::tide::Response>", None)?; buf.writeln("#[inline]")?; buf.writeln("fn into(self) -> ::askama_tide::tide::Response {")?; buf.writeln(&format!("::askama_tide::into_response(&self, {:?})", ext))?; buf.writeln("}\n}") } fn impl_warp_reply(&mut self, buf: &mut Buffer) -> Result<(), CompileError> { self.write_header(buf, "::askama_warp::warp::reply::Reply", None)?; buf.writeln("#[inline]")?; buf.writeln("fn into_response(self) -> ::askama_warp::warp::reply::Response {")?; let ext = self.input.extension().unwrap_or("txt"); buf.writeln(&format!("::askama_warp::reply(&self, {:?})", ext))?; buf.writeln("}")?; buf.writeln("}") } // Writes header for the `impl` for `TraitFromPathName` or `Template` // for the given context struct. fn write_header( &mut self, buf: &mut Buffer, target: &str, params: Option>, ) -> Result<(), CompileError> { let mut generics = self.input.ast.generics.clone(); if let Some(params) = params { for param in params { generics.params.push(param); } } let (_, orig_ty_generics, _) = self.input.ast.generics.split_for_impl(); let (impl_generics, _, where_clause) = generics.split_for_impl(); buf.writeln( format!( "{} {} for {}{} {{", quote!(impl#impl_generics), target, self.input.ast.ident, quote!(#orig_ty_generics #where_clause), ) .as_ref(), ) } /* Helper methods for handling node types */ fn handle( &mut self, ctx: &'a Context<'_>, nodes: &'a [Node<'_>], buf: &mut Buffer, level: AstLevel, ) -> Result { let mut size_hint = 0; for n in nodes { match *n { Node::Lit(lws, val, rws) => { self.visit_lit(lws, val, rws); } Node::Comment(ws) => { self.write_comment(ws); } Node::Expr(ws, ref val) => { self.write_expr(ws, val); } Node::LetDecl(ws, ref var) => { self.write_let_decl(buf, ws, var)?; } Node::Let(ws, ref var, ref val) => { self.write_let(buf, ws, var, val)?; } Node::Cond(ref conds, ws) => { self.write_cond(ctx, buf, conds, ws)?; } Node::Match(ws1, ref expr, ref arms, ws2) => { self.write_match(ctx, buf, ws1, expr, arms, ws2)?; } Node::Loop(ref loop_block) => { self.write_loop(ctx, buf, loop_block)?; } Node::BlockDef(ws1, name, _, ws2) => { self.write_block(buf, Some(name), Ws(ws1.0, ws2.1))?; } Node::Include(ws, path) => { size_hint += self.handle_include(ctx, buf, ws, path)?; } Node::Call(ws, scope, name, ref args) => { size_hint += self.write_call(ctx, buf, ws, scope, name, args)?; } Node::Macro(_, ref m) => { if level != AstLevel::Top { return Err("macro blocks only allowed at the top level".into()); } self.flush_ws(m.ws1); self.prepare_ws(m.ws2); } Node::Raw(ws1, lws, val, rws, ws2) => { self.handle_ws(ws1); self.visit_lit(lws, val, rws); self.handle_ws(ws2); } Node::Import(ws, _, _) => { if level != AstLevel::Top { return Err("import blocks only allowed at the top level".into()); } self.handle_ws(ws); } Node::Extends(_) => { if level != AstLevel::Top { return Err("extend blocks only allowed at the top level".into()); } // No whitespace handling: child template top-level is not used, // except for the blocks defined in it. } Node::Break(ws) => { self.handle_ws(ws); self.write_buf_writable(buf)?; buf.writeln("break;")?; } Node::Continue(ws) => { self.handle_ws(ws); self.write_buf_writable(buf)?; buf.writeln("continue;")?; } } } if AstLevel::Top == level { size_hint += self.write_buf_writable(buf)?; } Ok(size_hint) } fn write_cond( &mut self, ctx: &'a Context<'_>, buf: &mut Buffer, conds: &'a [Cond<'_>], ws: Ws, ) -> Result { let mut flushed = 0; let mut arm_sizes = Vec::new(); let mut has_else = false; for (i, &(cws, ref cond, ref nodes)) in conds.iter().enumerate() { self.handle_ws(cws); flushed += self.write_buf_writable(buf)?; if i > 0 { self.locals.pop(); } self.locals.push(); let mut arm_size = 0; if let Some(CondTest { target, expr }) = cond { if i == 0 { buf.write("if "); } else { buf.dedent()?; buf.write("} else if "); } if let Some(target) = target { let mut expr_buf = Buffer::new(0); self.visit_expr(&mut expr_buf, expr)?; buf.write("let "); self.visit_target(buf, true, true, target); buf.write(" = &("); buf.write(&expr_buf.buf); buf.write(")"); } else { // The following syntax `*(&(...) as &bool)` is used to // trigger Rust's automatic dereferencing, to coerce // e.g. `&&&&&bool` to `bool`. First `&(...) as &bool` // coerces e.g. `&&&bool` to `&bool`. Then `*(&bool)` // finally dereferences it to `bool`. buf.write("*(&("); let expr_code = self.visit_expr_root(expr)?; buf.write(&expr_code); buf.write(") as &bool)"); } } else { buf.dedent()?; buf.write("} else"); has_else = true; } buf.writeln(" {")?; arm_size += self.handle(ctx, nodes, buf, AstLevel::Nested)?; arm_sizes.push(arm_size); } self.handle_ws(ws); flushed += self.write_buf_writable(buf)?; buf.writeln("}")?; self.locals.pop(); if !has_else { arm_sizes.push(0); } Ok(flushed + median(&mut arm_sizes)) } #[allow(clippy::too_many_arguments)] fn write_match( &mut self, ctx: &'a Context<'_>, buf: &mut Buffer, ws1: Ws, expr: &Expr<'_>, arms: &'a [When<'_>], ws2: Ws, ) -> Result { self.flush_ws(ws1); let flushed = self.write_buf_writable(buf)?; let mut arm_sizes = Vec::new(); let expr_code = self.visit_expr_root(expr)?; buf.writeln(&format!("match &{} {{", expr_code))?; let mut arm_size = 0; for (i, arm) in arms.iter().enumerate() { let &(ws, ref target, ref body) = arm; self.handle_ws(ws); if i > 0 { arm_sizes.push(arm_size + self.write_buf_writable(buf)?); buf.writeln("}")?; self.locals.pop(); } self.locals.push(); self.visit_target(buf, true, true, target); buf.writeln(" => {")?; arm_size = self.handle(ctx, body, buf, AstLevel::Nested)?; } self.handle_ws(ws2); arm_sizes.push(arm_size + self.write_buf_writable(buf)?); buf.writeln("}")?; self.locals.pop(); buf.writeln("}")?; Ok(flushed + median(&mut arm_sizes)) } #[allow(clippy::too_many_arguments)] fn write_loop( &mut self, ctx: &'a Context<'_>, buf: &mut Buffer, loop_block: &'a Loop<'_>, ) -> Result { self.handle_ws(loop_block.ws1); self.locals.push(); let expr_code = self.visit_expr_root(&loop_block.iter)?; let flushed = self.write_buf_writable(buf)?; buf.writeln("{")?; buf.writeln("let mut _did_loop = false;")?; match loop_block.iter { Expr::Range(_, _, _) => buf.writeln(&format!("let _iter = {};", expr_code)), Expr::Array(..) => buf.writeln(&format!("let _iter = {}.iter();", expr_code)), // If `iter` is a call then we assume it's something that returns // an iterator. If not then the user can explicitly add the needed // call without issues. Expr::Call(..) | Expr::Index(..) => { buf.writeln(&format!("let _iter = ({}).into_iter();", expr_code)) } // If accessing `self` then it most likely needs to be // borrowed, to prevent an attempt of moving. _ if expr_code.starts_with("self.") => { buf.writeln(&format!("let _iter = (&{}).into_iter();", expr_code)) } // If accessing a field then it most likely needs to be // borrowed, to prevent an attempt of moving. Expr::Attr(..) => buf.writeln(&format!("let _iter = (&{}).into_iter();", expr_code)), // Otherwise, we borrow `iter` assuming that it implements `IntoIterator`. _ => buf.writeln(&format!("let _iter = ({}).into_iter();", expr_code)), }?; if let Some(cond) = &loop_block.cond { self.locals.push(); buf.write("let _iter = _iter.filter(|"); self.visit_target(buf, true, true, &loop_block.var); buf.write("| -> bool {"); self.visit_expr(buf, cond)?; buf.writeln("});")?; self.locals.pop(); } self.locals.push(); buf.write("for ("); self.visit_target(buf, true, true, &loop_block.var); buf.writeln(", _loop_item) in ::askama::helpers::TemplateLoop::new(_iter) {")?; buf.writeln("_did_loop = true;")?; let mut size_hint1 = self.handle(ctx, &loop_block.body, buf, AstLevel::Nested)?; self.handle_ws(loop_block.ws2); size_hint1 += self.write_buf_writable(buf)?; self.locals.pop(); buf.writeln("}")?; buf.writeln("if !_did_loop {")?; self.locals.push(); let mut size_hint2 = self.handle(ctx, &loop_block.else_block, buf, AstLevel::Nested)?; self.handle_ws(loop_block.ws3); size_hint2 += self.write_buf_writable(buf)?; self.locals.pop(); buf.writeln("}")?; buf.writeln("}")?; Ok(flushed + ((size_hint1 * 3) + size_hint2) / 2) } fn write_call( &mut self, ctx: &'a Context<'_>, buf: &mut Buffer, ws: Ws, scope: Option<&str>, name: &str, args: &[Expr<'_>], ) -> Result { if name == "super" { return self.write_block(buf, None, ws); } let (def, own_ctx) = match scope { Some(s) => { let path = ctx.imports.get(s).ok_or_else(|| { CompileError::from(format!("no import found for scope {:?}", s)) })?; let mctx = self.contexts.get(path.as_path()).ok_or_else(|| { CompileError::from(format!("context for {:?} not found", path)) })?; let def = mctx.macros.get(name).ok_or_else(|| { CompileError::from(format!("macro {:?} not found in scope {:?}", name, s)) })?; (def, mctx) } None => { let def = ctx .macros .get(name) .ok_or_else(|| CompileError::from(format!("macro {:?} not found", name)))?; (def, ctx) } }; self.flush_ws(ws); // Cannot handle_ws() here: whitespace from macro definition comes first self.locals.push(); self.write_buf_writable(buf)?; buf.writeln("{")?; self.prepare_ws(def.ws1); let mut names = Buffer::new(0); let mut values = Buffer::new(0); let mut is_first_variable = true; for (i, arg) in def.args.iter().enumerate() { let expr = args.get(i).ok_or_else(|| { CompileError::from(format!("macro {:?} takes more than {} arguments", name, i)) })?; match expr { // If `expr` is already a form of variable then // don't reintroduce a new variable. This is // to avoid moving non-copyable values. Expr::Var(name) => { let var = self.locals.resolve_or_self(name); self.locals.insert(arg, LocalMeta::with_ref(var)); } Expr::Attr(obj, attr) => { let mut attr_buf = Buffer::new(0); self.visit_attr(&mut attr_buf, obj, attr)?; let var = self.locals.resolve(&attr_buf.buf).unwrap_or(attr_buf.buf); self.locals.insert(arg, LocalMeta::with_ref(var)); } // Everything else still needs to become variables, // to avoid having the same logic be executed // multiple times, e.g. in the case of macro // parameters being used multiple times. _ => { if is_first_variable { is_first_variable = false } else { names.write(", "); values.write(", "); } names.write(arg); values.write("("); values.write(&self.visit_expr_root(expr)?); values.write(")"); self.locals.insert_with_default(arg); } } } debug_assert_eq!(names.buf.is_empty(), values.buf.is_empty()); if !names.buf.is_empty() { buf.writeln(&format!("let ({}) = ({});", names.buf, values.buf))?; } let mut size_hint = self.handle(own_ctx, &def.nodes, buf, AstLevel::Nested)?; self.flush_ws(def.ws2); size_hint += self.write_buf_writable(buf)?; buf.writeln("}")?; self.locals.pop(); self.prepare_ws(ws); Ok(size_hint) } fn handle_include( &mut self, ctx: &'a Context<'_>, buf: &mut Buffer, ws: Ws, path: &str, ) -> Result { self.flush_ws(ws); self.write_buf_writable(buf)?; let path = self .input .config .find_template(path, Some(&self.input.path))?; let src = get_template_source(&path)?; let nodes = parse(&src, self.input.syntax)?; // Make sure the compiler understands that the generated code depends on the template file. { let path = path.to_str().unwrap(); buf.writeln( "e! { include_bytes!(#path); } .to_string(), )?; } let size_hint = { // Since nodes must not outlive the Generator, we instantiate // a nested Generator here to handle the include's nodes. let mut gen = self.child(); let mut size_hint = gen.handle(ctx, &nodes, buf, AstLevel::Nested)?; size_hint += gen.write_buf_writable(buf)?; size_hint }; self.prepare_ws(ws); Ok(size_hint) } fn write_let_decl( &mut self, buf: &mut Buffer, ws: Ws, var: &'a Target<'_>, ) -> Result<(), CompileError> { self.handle_ws(ws); self.write_buf_writable(buf)?; buf.write("let "); self.visit_target(buf, false, true, var); buf.writeln(";") } fn is_shadowing_variable(&self, var: &Target<'a>) -> Result { match var { Target::Name(name) => { let name = normalize_identifier(name); match self.locals.get(&name) { // declares a new variable None => Ok(false), // an initialized variable gets shadowed Some(meta) if meta.initialized => Ok(true), // initializes a variable that was introduced in a LetDecl before _ => Ok(false), } } Target::Tuple(_, targets) => { for target in targets { match self.is_shadowing_variable(target) { Ok(false) => continue, outcome => return outcome, } } Ok(false) } Target::Struct(_, named_targets) => { for (_, target) in named_targets { match self.is_shadowing_variable(target) { Ok(false) => continue, outcome => return outcome, } } Ok(false) } _ => Err("literals are not allowed on the left-hand side of an assignment".into()), } } fn write_let( &mut self, buf: &mut Buffer, ws: Ws, var: &'a Target<'_>, val: &Expr<'_>, ) -> Result<(), CompileError> { self.handle_ws(ws); let mut expr_buf = Buffer::new(0); self.visit_expr(&mut expr_buf, val)?; let shadowed = self.is_shadowing_variable(var)?; if shadowed { // Need to flush the buffer if the variable is being shadowed, // to ensure the old variable is used. self.write_buf_writable(buf)?; } if shadowed || !matches!(var, &Target::Name(_)) || matches!(var, Target::Name(name) if self.locals.get(name).is_none()) { buf.write("let "); } self.visit_target(buf, true, true, var); buf.writeln(&format!(" = {};", &expr_buf.buf)) } // If `name` is `Some`, this is a call to a block definition, and we have to find // the first block for that name from the ancestry chain. If name is `None`, this // is from a `super()` call, and we can get the name from `self.super_block`. fn write_block( &mut self, buf: &mut Buffer, name: Option<&'a str>, outer: Ws, ) -> Result { // Flush preceding whitespace according to the outer WS spec self.flush_ws(outer); let prev_block = self.super_block; let cur = match (name, prev_block) { // The top-level context contains a block definition (Some(cur_name), None) => (cur_name, 0), // A block definition contains a block definition of the same name (Some(cur_name), Some((prev_name, _))) if cur_name == prev_name => { return Err(format!("cannot define recursive blocks ({})", cur_name).into()); } // A block definition contains a definition of another block (Some(cur_name), Some((_, _))) => (cur_name, 0), // `super()` was called inside a block (None, Some((prev_name, gen))) => (prev_name, gen + 1), // `super()` is called from outside a block (None, None) => return Err("cannot call 'super()' outside block".into()), }; self.super_block = Some(cur); // Get the block definition from the heritage chain let heritage = self .heritage .as_ref() .ok_or_else(|| CompileError::from("no block ancestors available"))?; let (ctx, def) = heritage.blocks[cur.0].get(cur.1).ok_or_else(|| { CompileError::from(match name { None => format!("no super() block found for block '{}'", cur.0), Some(name) => format!("no block found for name '{}'", name), }) })?; // Get the nodes and whitespace suppression data from the block definition let (ws1, nodes, ws2) = if let Node::BlockDef(ws1, _, nodes, ws2) = def { (ws1, nodes, ws2) } else { unreachable!() }; // Handle inner whitespace suppression spec and process block nodes self.prepare_ws(*ws1); self.locals.push(); let size_hint = self.handle(ctx, nodes, buf, AstLevel::Block)?; if !self.locals.is_current_empty() { // Need to flush the buffer before popping the variable stack self.write_buf_writable(buf)?; } self.locals.pop(); self.flush_ws(*ws2); // Restore original block context and set whitespace suppression for // succeeding whitespace according to the outer WS spec self.super_block = prev_block; self.prepare_ws(outer); Ok(size_hint) } fn write_expr(&mut self, ws: Ws, s: &'a Expr<'a>) { self.handle_ws(ws); self.buf_writable.push(Writable::Expr(s)); } // Write expression buffer and empty fn write_buf_writable(&mut self, buf: &mut Buffer) -> Result { if self.buf_writable.is_empty() { return Ok(0); } if self .buf_writable .iter() .all(|w| matches!(w, Writable::Lit(_))) { let mut buf_lit = Buffer::new(0); for s in mem::take(&mut self.buf_writable) { if let Writable::Lit(s) = s { buf_lit.write(s); }; } buf.writeln(&format!("writer.write_str({:#?})?;", &buf_lit.buf))?; return Ok(buf_lit.buf.len()); } let mut size_hint = 0; let mut buf_format = Buffer::new(0); let mut buf_expr = Buffer::new(buf.indent + 1); let mut expr_cache = HashMap::with_capacity(self.buf_writable.len()); for s in mem::take(&mut self.buf_writable) { match s { Writable::Lit(s) => { buf_format.write(&s.replace('{', "{{").replace('}', "}}")); size_hint += s.len(); } Writable::Expr(s) => { use self::DisplayWrap::*; let mut expr_buf = Buffer::new(0); let wrapped = self.visit_expr(&mut expr_buf, s)?; let expression = match wrapped { Wrapped => expr_buf.buf, Unwrapped => format!( "::askama::MarkupDisplay::new_unsafe(&({}), {})", expr_buf.buf, self.input.escaper ), }; use std::collections::hash_map::Entry; let id = match expr_cache.entry(expression.clone()) { Entry::Occupied(e) => *e.get(), Entry::Vacant(e) => { let id = self.named; self.named += 1; buf_expr.write(&format!("expr{} = ", id)); buf_expr.write("&"); buf_expr.write(&expression); buf_expr.writeln(",")?; e.insert(id); id } }; buf_format.write(&format!("{{expr{}}}", id)); size_hint += 3; } } } buf.writeln("::std::write!(")?; buf.indent(); buf.writeln("writer,")?; buf.writeln(&format!("{:#?},", &buf_format.buf))?; buf.writeln(buf_expr.buf.trim())?; buf.dedent()?; buf.writeln(")?;")?; Ok(size_hint) } fn visit_lit(&mut self, lws: &'a str, val: &'a str, rws: &'a str) { assert!(self.next_ws.is_none()); if !lws.is_empty() { if self.skip_ws { self.skip_ws = false; } else if val.is_empty() { assert!(rws.is_empty()); self.next_ws = Some(lws); } else { self.buf_writable.push(Writable::Lit(lws)); } } if !val.is_empty() { self.buf_writable.push(Writable::Lit(val)); } if !rws.is_empty() { self.next_ws = Some(rws); } } fn write_comment(&mut self, ws: Ws) { self.handle_ws(ws); } /* Visitor methods for expression types */ fn visit_expr_root(&mut self, expr: &Expr<'_>) -> Result { let mut buf = Buffer::new(0); self.visit_expr(&mut buf, expr)?; Ok(buf.buf) } fn visit_expr( &mut self, buf: &mut Buffer, expr: &Expr<'_>, ) -> Result { Ok(match *expr { Expr::BoolLit(s) => self.visit_bool_lit(buf, s), Expr::NumLit(s) => self.visit_num_lit(buf, s), Expr::StrLit(s) => self.visit_str_lit(buf, s), Expr::CharLit(s) => self.visit_char_lit(buf, s), Expr::Var(s) => self.visit_var(buf, s), Expr::Path(ref path) => self.visit_path(buf, path), Expr::Array(ref elements) => self.visit_array(buf, elements)?, Expr::Attr(ref obj, name) => self.visit_attr(buf, obj, name)?, Expr::Index(ref obj, ref key) => self.visit_index(buf, obj, key)?, Expr::Filter(name, ref args) => self.visit_filter(buf, name, args)?, Expr::Unary(op, ref inner) => self.visit_unary(buf, op, inner)?, Expr::BinOp(op, ref left, ref right) => self.visit_binop(buf, op, left, right)?, Expr::Range(op, ref left, ref right) => self.visit_range(buf, op, left, right)?, Expr::Group(ref inner) => self.visit_group(buf, inner)?, Expr::Call(ref obj, ref args) => self.visit_call(buf, obj, args)?, Expr::RustMacro(name, args) => self.visit_rust_macro(buf, name, args), Expr::Try(ref expr) => self.visit_try(buf, expr.as_ref())?, Expr::Tuple(ref exprs) => self.visit_tuple(buf, exprs)?, }) } fn visit_try( &mut self, buf: &mut Buffer, expr: &Expr<'_>, ) -> Result { buf.write("::core::result::Result::map_err("); self.visit_expr(buf, expr)?; buf.write(", |err| ::askama::shared::Error::Custom(::core::convert::Into::into(err)))?"); Ok(DisplayWrap::Unwrapped) } fn visit_rust_macro(&mut self, buf: &mut Buffer, name: &str, args: &str) -> DisplayWrap { buf.write(name); buf.write("!("); buf.write(args); buf.write(")"); DisplayWrap::Unwrapped } #[cfg(not(feature = "markdown"))] fn _visit_markdown_filter( &mut self, _buf: &mut Buffer, _args: &[Expr<'_>], ) -> Result { Err("the `markdown` filter requires the `markdown` feature to be enabled".into()) } #[cfg(feature = "markdown")] fn _visit_markdown_filter( &mut self, buf: &mut Buffer, args: &[Expr<'_>], ) -> Result { let (md, options) = match args { [md] => (md, None), [md, options] => (md, Some(options)), _ => return Err("markdown filter expects no more than one option argument".into()), }; buf.write(&format!( "::askama::filters::markdown({}, ", self.input.escaper )); self.visit_expr(buf, md)?; match options { Some(options) => { buf.write(", ::core::option::Option::Some("); self.visit_expr(buf, options)?; buf.write(")"); } None => buf.write(", ::core::option::Option::None"), } buf.write(")?"); Ok(DisplayWrap::Wrapped) } fn visit_filter( &mut self, buf: &mut Buffer, mut name: &str, args: &[Expr<'_>], ) -> Result { if matches!(name, "escape" | "e") { self._visit_escape_filter(buf, args)?; return Ok(DisplayWrap::Wrapped); } else if name == "format" { self._visit_format_filter(buf, args)?; return Ok(DisplayWrap::Unwrapped); } else if name == "fmt" { self._visit_fmt_filter(buf, args)?; return Ok(DisplayWrap::Unwrapped); } else if name == "join" { self._visit_join_filter(buf, args)?; return Ok(DisplayWrap::Unwrapped); } else if name == "markdown" { return self._visit_markdown_filter(buf, args); } if name == "tojson" { name = "json"; } #[cfg(not(feature = "json"))] if name == "json" { return Err("the `json` filter requires the `serde-json` feature to be enabled".into()); } #[cfg(not(feature = "yaml"))] if name == "yaml" { return Err("the `yaml` filter requires the `serde-yaml` feature to be enabled".into()); } const FILTERS: [&str; 3] = ["safe", "json", "yaml"]; if FILTERS.contains(&name) { buf.write(&format!( "::askama::filters::{}({}, ", name, self.input.escaper )); } else if filters::BUILT_IN_FILTERS.contains(&name) { buf.write(&format!("::askama::filters::{}(", name)); } else { buf.write(&format!("filters::{}(", name)); } self._visit_args(buf, args)?; buf.write(")?"); Ok(match FILTERS.contains(&name) { true => DisplayWrap::Wrapped, false => DisplayWrap::Unwrapped, }) } fn _visit_escape_filter( &mut self, buf: &mut Buffer, args: &[Expr<'_>], ) -> Result<(), CompileError> { if args.len() > 2 { return Err("only two arguments allowed to escape filter".into()); } let opt_escaper = match args.get(1) { Some(Expr::StrLit(name)) => Some(*name), Some(_) => return Err("invalid escaper type for escape filter".into()), None => None, }; let escaper = match opt_escaper { Some(name) => self .input .config .escapers .iter() .find_map(|(escapers, escaper)| escapers.contains(name).then(|| escaper)) .ok_or_else(|| CompileError::from("invalid escaper for escape filter"))?, None => self.input.escaper, }; buf.write("::askama::filters::escape("); buf.write(escaper); buf.write(", "); self._visit_args(buf, &args[..1])?; buf.write(")?"); Ok(()) } fn _visit_format_filter( &mut self, buf: &mut Buffer, args: &[Expr<'_>], ) -> Result<(), CompileError> { buf.write("format!("); if let Some(Expr::StrLit(v)) = args.first() { self.visit_str_lit(buf, v); if args.len() > 1 { buf.write(", "); } } else { return Err("invalid expression type for format filter".into()); } self._visit_args(buf, &args[1..])?; buf.write(")"); Ok(()) } fn _visit_fmt_filter( &mut self, buf: &mut Buffer, args: &[Expr<'_>], ) -> Result<(), CompileError> { buf.write("format!("); if let Some(Expr::StrLit(v)) = args.get(1) { self.visit_str_lit(buf, v); buf.write(", "); } else { return Err("invalid expression type for fmt filter".into()); } self._visit_args(buf, &args[0..1])?; if args.len() > 2 { return Err("only two arguments allowed to fmt filter".into()); } buf.write(")"); Ok(()) } // Force type coercion on first argument to `join` filter (see #39). fn _visit_join_filter( &mut self, buf: &mut Buffer, args: &[Expr<'_>], ) -> Result<(), CompileError> { buf.write("::askama::filters::join((&"); for (i, arg) in args.iter().enumerate() { if i > 0 { buf.write(", &"); } self.visit_expr(buf, arg)?; if i == 0 { buf.write(").into_iter()"); } } buf.write(")?"); Ok(()) } fn _visit_args(&mut self, buf: &mut Buffer, args: &[Expr<'_>]) -> Result<(), CompileError> { if args.is_empty() { return Ok(()); } for (i, arg) in args.iter().enumerate() { if i > 0 { buf.write(", "); } let borrow = !arg.is_copyable(); if borrow { buf.write("&("); } match arg { Expr::Call(left, _) if !matches!(left.as_ref(), Expr::Path(_)) => { buf.writeln("{")?; self.visit_expr(buf, arg)?; buf.writeln("}")?; } _ => { self.visit_expr(buf, arg)?; } } if borrow { buf.write(")"); } } Ok(()) } fn visit_attr( &mut self, buf: &mut Buffer, obj: &Expr<'_>, attr: &str, ) -> Result { if let Expr::Var(name) = *obj { if name == "loop" { if attr == "index" { buf.write("(_loop_item.index + 1)"); return Ok(DisplayWrap::Unwrapped); } else if attr == "index0" { buf.write("_loop_item.index"); return Ok(DisplayWrap::Unwrapped); } else if attr == "first" { buf.write("_loop_item.first"); return Ok(DisplayWrap::Unwrapped); } else if attr == "last" { buf.write("_loop_item.last"); return Ok(DisplayWrap::Unwrapped); } else { return Err("unknown loop variable".into()); } } } self.visit_expr(buf, obj)?; buf.write(&format!(".{}", normalize_identifier(attr))); Ok(DisplayWrap::Unwrapped) } fn visit_index( &mut self, buf: &mut Buffer, obj: &Expr<'_>, key: &Expr<'_>, ) -> Result { buf.write("&"); self.visit_expr(buf, obj)?; buf.write("["); self.visit_expr(buf, key)?; buf.write("]"); Ok(DisplayWrap::Unwrapped) } fn visit_call( &mut self, buf: &mut Buffer, left: &Expr<'_>, args: &[Expr<'_>], ) -> Result { match left { Expr::Attr(left, method) if **left == Expr::Var("loop") => match *method { "cycle" => match args { [arg] => { if matches!(arg, Expr::Array(arr) if arr.is_empty()) { return Err("loop.cycle(…) cannot use an empty array".into()); } buf.write("({"); buf.write("let _cycle = &("); self.visit_expr(buf, arg)?; buf.writeln(");")?; buf.writeln("let _len = _cycle.len();")?; buf.writeln("if _len == 0 {")?; buf.writeln("return ::core::result::Result::Err(::askama::Error::Fmt(::core::fmt::Error));")?; buf.writeln("}")?; buf.writeln("_cycle[_loop_item.index % _len]")?; buf.writeln("})")?; } _ => return Err("loop.cycle(…) expects exactly one argument".into()), }, s => return Err(format!("unknown loop method: {:?}", s).into()), }, left => { match left { Expr::Var(name) => match self.locals.resolve(name) { Some(resolved) => buf.write(&resolved), None => buf.write(&format!("(&self.{})", normalize_identifier(name))), }, left => { self.visit_expr(buf, left)?; } } buf.write("("); self._visit_args(buf, args)?; buf.write(")"); } } Ok(DisplayWrap::Unwrapped) } fn visit_unary( &mut self, buf: &mut Buffer, op: &str, inner: &Expr<'_>, ) -> Result { buf.write(op); self.visit_expr(buf, inner)?; Ok(DisplayWrap::Unwrapped) } fn visit_range( &mut self, buf: &mut Buffer, op: &str, left: &Option>>, right: &Option>>, ) -> Result { if let Some(left) = left { self.visit_expr(buf, left)?; } buf.write(op); if let Some(right) = right { self.visit_expr(buf, right)?; } Ok(DisplayWrap::Unwrapped) } fn visit_binop( &mut self, buf: &mut Buffer, op: &str, left: &Expr<'_>, right: &Expr<'_>, ) -> Result { self.visit_expr(buf, left)?; buf.write(&format!(" {} ", op)); self.visit_expr(buf, right)?; Ok(DisplayWrap::Unwrapped) } fn visit_group( &mut self, buf: &mut Buffer, inner: &Expr<'_>, ) -> Result { buf.write("("); self.visit_expr(buf, inner)?; buf.write(")"); Ok(DisplayWrap::Unwrapped) } fn visit_tuple( &mut self, buf: &mut Buffer, exprs: &[Expr<'_>], ) -> Result { buf.write("("); for (index, expr) in exprs.iter().enumerate() { if index > 0 { buf.write(" "); } self.visit_expr(buf, expr)?; buf.write(","); } buf.write(")"); Ok(DisplayWrap::Unwrapped) } fn visit_array( &mut self, buf: &mut Buffer, elements: &[Expr<'_>], ) -> Result { buf.write("["); for (i, el) in elements.iter().enumerate() { if i > 0 { buf.write(", "); } self.visit_expr(buf, el)?; } buf.write("]"); Ok(DisplayWrap::Unwrapped) } fn visit_path(&mut self, buf: &mut Buffer, path: &[&str]) -> DisplayWrap { for (i, part) in path.iter().enumerate() { if i > 0 { buf.write("::"); } buf.write(part); } DisplayWrap::Unwrapped } fn visit_var(&mut self, buf: &mut Buffer, s: &str) -> DisplayWrap { if s == "self" { buf.write(s); return DisplayWrap::Unwrapped; } buf.write(normalize_identifier(&self.locals.resolve_or_self(s))); DisplayWrap::Unwrapped } fn visit_bool_lit(&mut self, buf: &mut Buffer, s: &str) -> DisplayWrap { buf.write(s); DisplayWrap::Unwrapped } fn visit_str_lit(&mut self, buf: &mut Buffer, s: &str) -> DisplayWrap { buf.write(&format!("\"{}\"", s)); DisplayWrap::Unwrapped } fn visit_char_lit(&mut self, buf: &mut Buffer, s: &str) -> DisplayWrap { buf.write(&format!("'{}'", s)); DisplayWrap::Unwrapped } fn visit_num_lit(&mut self, buf: &mut Buffer, s: &str) -> DisplayWrap { buf.write(s); DisplayWrap::Unwrapped } fn visit_target( &mut self, buf: &mut Buffer, initialized: bool, first_level: bool, target: &Target<'a>, ) { match target { Target::Name("_") => { buf.write("_"); } Target::Name(name) => { let name = normalize_identifier(name); match initialized { true => self.locals.insert(name, LocalMeta::initialized()), false => self.locals.insert_with_default(name), } buf.write(name); } Target::Tuple(path, targets) => { buf.write(&path.join("::")); buf.write("("); for target in targets { self.visit_target(buf, initialized, false, target); buf.write(","); } buf.write(")"); } Target::Struct(path, targets) => { buf.write(&path.join("::")); buf.write(" { "); for (name, target) in targets { buf.write(normalize_identifier(name)); buf.write(": "); self.visit_target(buf, initialized, false, target); buf.write(","); } buf.write(" }"); } Target::Path(path) => { self.visit_path(buf, path); } Target::StrLit(s) => { if first_level { buf.write("&"); } self.visit_str_lit(buf, s); } Target::NumLit(s) => { if first_level { buf.write("&"); } self.visit_num_lit(buf, s); } Target::CharLit(s) => { if first_level { buf.write("&"); } self.visit_char_lit(buf, s); } Target::BoolLit(s) => { if first_level { buf.write("&"); } buf.write(s); } } } /* Helper methods for dealing with whitespace nodes */ // Combines `flush_ws()` and `prepare_ws()` to handle both trailing whitespace from the // preceding literal and leading whitespace from the succeeding literal. fn handle_ws(&mut self, ws: Ws) { self.flush_ws(ws); self.prepare_ws(ws); } // If the previous literal left some trailing whitespace in `next_ws` and the // prefix whitespace suppressor from the given argument, flush that whitespace. // In either case, `next_ws` is reset to `None` (no trailing whitespace). fn flush_ws(&mut self, ws: Ws) { if self.next_ws.is_some() && !ws.0 { let val = self.next_ws.unwrap(); if !val.is_empty() { self.buf_writable.push(Writable::Lit(val)); } } self.next_ws = None; } // Sets `skip_ws` to match the suffix whitespace suppressor from the given // argument, to determine whether to suppress leading whitespace from the // next literal. fn prepare_ws(&mut self, ws: Ws) { self.skip_ws = ws.1; } } struct Buffer { // The buffer to generate the code into buf: String, // The current level of indentation (in spaces) indent: u8, // Whether the output buffer is currently at the start of a line start: bool, } impl Buffer { fn new(indent: u8) -> Self { Self { buf: String::new(), indent, start: true, } } fn writeln(&mut self, s: &str) -> Result<(), CompileError> { if s == "}" { self.dedent()?; } if !s.is_empty() { self.write(s); } self.buf.push('\n'); if s.ends_with('{') { self.indent(); } self.start = true; Ok(()) } fn write(&mut self, s: &str) { if self.start { for _ in 0..(self.indent * 4) { self.buf.push(' '); } self.start = false; } self.buf.push_str(s); } fn indent(&mut self) { self.indent += 1; } fn dedent(&mut self) -> Result<(), CompileError> { if self.indent == 0 { return Err("dedent() called while indentation == 0".into()); } self.indent -= 1; Ok(()) } } #[derive(Clone, Default)] struct LocalMeta { refs: Option, initialized: bool, } impl LocalMeta { fn initialized() -> Self { Self { refs: None, initialized: true, } } fn with_ref(refs: String) -> Self { Self { refs: Some(refs), initialized: true, } } } // type SetChain<'a, T> = MapChain<'a, T, ()>; #[derive(Debug)] struct MapChain<'a, K, V> where K: cmp::Eq + hash::Hash, { parent: Option<&'a MapChain<'a, K, V>>, scopes: Vec>, } impl<'a, K: 'a, V: 'a> MapChain<'a, K, V> where K: cmp::Eq + hash::Hash, { fn new() -> MapChain<'a, K, V> { MapChain { parent: None, scopes: vec![HashMap::new()], } } fn with_parent<'p>(parent: &'p MapChain<'_, K, V>) -> MapChain<'p, K, V> { MapChain { parent: Some(parent), scopes: vec![HashMap::new()], } } /// Iterates the scopes in reverse and returns `Some(LocalMeta)` /// from the first scope where `key` exists. fn get(&self, key: &K) -> Option<&V> { let scopes = self.scopes.iter().rev(); scopes .filter_map(|set| set.get(key)) .next() .or_else(|| self.parent.and_then(|set| set.get(key))) } fn is_current_empty(&self) -> bool { self.scopes.last().unwrap().is_empty() } fn insert(&mut self, key: K, val: V) { self.scopes.last_mut().unwrap().insert(key, val); // Note that if `insert` returns `Some` then it implies // an identifier is reused. For e.g. `{% macro f(a, a) %}` // and `{% let (a, a) = ... %}` then this results in a // generated template, which when compiled fails with the // compile error "identifier `a` used more than once". } fn insert_with_default(&mut self, key: K) where V: Default, { self.insert(key, V::default()); } fn push(&mut self) { self.scopes.push(HashMap::new()); } fn pop(&mut self) { self.scopes.pop().unwrap(); assert!(!self.scopes.is_empty()); } } impl MapChain<'_, &str, LocalMeta> { fn resolve(&self, name: &str) -> Option { let name = normalize_identifier(name); self.get(&name).map(|meta| match &meta.refs { Some(expr) => expr.clone(), None => name.to_string(), }) } fn resolve_or_self(&self, name: &str) -> String { let name = normalize_identifier(name); self.resolve(name) .unwrap_or_else(|| format!("self.{}", name)) } } fn median(sizes: &mut [usize]) -> usize { sizes.sort_unstable(); if sizes.len() % 2 == 1 { sizes[sizes.len() / 2] } else { (sizes[sizes.len() / 2 - 1] + sizes[sizes.len() / 2]) / 2 } } #[derive(Clone, PartialEq)] enum AstLevel { Top, Block, Nested, } impl Copy for AstLevel {} #[derive(Clone)] enum DisplayWrap { Wrapped, Unwrapped, } impl Copy for DisplayWrap {} #[derive(Debug)] enum Writable<'a> { Lit(&'a str), Expr(&'a Expr<'a>), } // Identifiers to be replaced with raw identifiers, so as to avoid // collisions between template syntax and Rust's syntax. In particular // [Rust keywords](https://doc.rust-lang.org/reference/keywords.html) // should be replaced, since they're not reserved words in Askama // syntax but have a high probability of causing problems in the // generated code. // // This list excludes the Rust keywords *self*, *Self*, and *super* // because they are not allowed to be raw identifiers, and *loop* // because it's used something like a keyword in the template // language. static USE_RAW: [(&str, &str); 47] = [ ("as", "r#as"), ("break", "r#break"), ("const", "r#const"), ("continue", "r#continue"), ("crate", "r#crate"), ("else", "r#else"), ("enum", "r#enum"), ("extern", "r#extern"), ("false", "r#false"), ("fn", "r#fn"), ("for", "r#for"), ("if", "r#if"), ("impl", "r#impl"), ("in", "r#in"), ("let", "r#let"), ("match", "r#match"), ("mod", "r#mod"), ("move", "r#move"), ("mut", "r#mut"), ("pub", "r#pub"), ("ref", "r#ref"), ("return", "r#return"), ("static", "r#static"), ("struct", "r#struct"), ("trait", "r#trait"), ("true", "r#true"), ("type", "r#type"), ("unsafe", "r#unsafe"), ("use", "r#use"), ("where", "r#where"), ("while", "r#while"), ("async", "r#async"), ("await", "r#await"), ("dyn", "r#dyn"), ("abstract", "r#abstract"), ("become", "r#become"), ("box", "r#box"), ("do", "r#do"), ("final", "r#final"), ("macro", "r#macro"), ("override", "r#override"), ("priv", "r#priv"), ("typeof", "r#typeof"), ("unsized", "r#unsized"), ("virtual", "r#virtual"), ("yield", "r#yield"), ("try", "r#try"), ]; fn normalize_identifier(ident: &str) -> &str { if let Some(word) = USE_RAW.iter().find(|x| x.0 == ident) { word.1 } else { ident } }