use input::TemplateInput; use parser::{self, Cond, Expr, Macro, MatchParameter, MatchVariant, Node, Target, When, WS}; use shared::{filters, path}; use quote::ToTokens; use proc_macro2::Span; use std::{cmp, hash, str}; use std::path::Path; use std::collections::{HashMap, HashSet}; use syn; pub fn generate(input: &TemplateInput, nodes: &[Node], imported: &HashMap<(&str, &str), Macro>) -> String { Generator::default().build(&State::new(input, nodes, imported)) } struct State<'a> { input: &'a TemplateInput<'a>, nodes: &'a [Node<'a>], blocks: Vec<&'a Node<'a>>, macros: MacroMap<'a>, trait_name: String, derived: bool, } impl<'a> State<'a> { fn new<'n>(input: &'n TemplateInput, nodes: &'n [Node], imported: &'n HashMap<(&'n str, &'n str), Macro<'n>>) -> State<'n> { let mut base = None; let mut blocks = Vec::new(); let mut macros = HashMap::new(); for n in nodes { match n { Node::Extends(Expr::StrLit(path)) => match base { Some(_) => panic!("multiple extend blocks found"), None => { base = Some(*path); }, }, def @ Node::BlockDef(_, _, _, _) => { blocks.push(def); }, Node::Macro(name, m) => { macros.insert((None, *name), m); }, _ => {}, } } let mut check_nested = 0; let mut nested_blocks = Vec::new(); while check_nested < blocks.len() { if let Node::BlockDef(_, _, ref nodes, _) = blocks[check_nested] { for n in nodes { match n { def @ Node::BlockDef(_, _, _, _) => { nested_blocks.push(def); }, _ => {}, } } } else { panic!("non block found in list of blocks"); } blocks.append(&mut nested_blocks); check_nested += 1; } for (&(scope, name), m) in imported { macros.insert((Some(scope), name), m); } State { input, nodes, blocks, macros, trait_name: match base { Some(user_path) => trait_name_for_path( &path::find_template_from_path(user_path, Some(&input.path)) ), None => trait_name_for_path(&input.path), }, derived: base.is_some(), } } } fn trait_name_for_path(path: &Path) -> String { let mut res = String::new(); res.push_str("TraitFrom"); for c in path.to_string_lossy().chars() { if c.is_alphanumeric() { res.push(c); } else { res.push_str(&format!("{:x}", c as u32)); } } res } fn get_parent_type(ast: &syn::DeriveInput) -> Option<&syn::Type> { match ast.data { syn::Data::Struct(syn::DataStruct { fields: syn::Fields::Named(ref fields), .. }) => fields.named.iter().filter_map(|f| { f.ident.as_ref().and_then(|name| { if name == "_parent" { Some(&f.ty) } else { None } }) }), _ => panic!("derive(Template) only works for struct items"), }.next() } struct Generator<'a> { buf: String, indent: u8, start: bool, locals: SetChain<'a, &'a str>, next_ws: Option<&'a str>, skip_ws: bool, vars: usize, impl_blocks: bool, } impl<'a> Generator<'a> { fn new<'n>(locals: SetChain<'n, &'n str>, indent: u8) -> Generator<'n> { Generator { buf: String::new(), indent, start: true, locals, next_ws: None, skip_ws: false, vars: 0, impl_blocks: false, } } fn default<'n>() -> Generator<'n> { Self::new(SetChain::new(), 0) } fn child(&mut self) -> Generator { let locals = SetChain::with_parent(&self.locals); Self::new(locals, self.indent) } // Takes a State and generates the relevant implementations. fn build(mut self, state: &'a State) -> String { if !state.blocks.is_empty() { if !state.derived { self.define_trait(state); } else { let parent_type = get_parent_type(state.input.ast) .expect("expected field '_parent' in extending template struct"); self.deref_to_parent(state, parent_type); } let trait_nodes = if !state.derived { Some(&state.nodes[..]) } else { None }; self.impl_trait(state, trait_nodes); self.impl_template_for_trait(state); } else { self.impl_template(state); } self.impl_display(state); if cfg!(feature = "iron") { self.impl_modifier_response(state); } if cfg!(feature = "rocket") { self.impl_responder(state); } self.buf } // Implement `Template` for the given context struct. fn impl_template(&mut self, state: &'a State) { self.write_header(state, "::askama::Template", None); self.writeln("fn render_into(&self, writer: &mut ::std::fmt::Write) -> \ ::askama::Result<()> {"); self.writeln("#[allow(unused_imports)] use ::std::ops::Deref as HiddenDerefTrait;"); self.handle(state, state.nodes, AstLevel::Top); self.flush_ws(&WS(false, false)); self.writeln("Ok(())"); self.writeln("}"); self.writeln("}"); } // Implement `Display` for the given context struct. fn impl_display(&mut self, state: &'a State) { self.write_header(state, "::std::fmt::Display", None); self.writeln("fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {"); self.writeln("self.render_into(f).map_err(|_| ::std::fmt::Error {})"); self.writeln("}"); self.writeln("}"); } // Implement `Deref` for an inheriting context struct. fn deref_to_parent(&mut self, state: &'a State, parent_type: &syn::Type) { self.write_header(state, "::std::ops::Deref", None); self.writeln(&format!("type Target = {};", parent_type.into_token_stream())); self.writeln("fn deref(&self) -> &Self::Target {"); self.writeln("&self._parent"); self.writeln("}"); self.writeln("}"); } // Implement `TraitFromPathName` for the given context struct. fn impl_trait(&mut self, state: &'a State, nodes: Option<&'a [Node]>) { self.write_header(state, &state.trait_name, None); self.write_block_defs(state); self.writeln("#[allow(unused_variables)]"); self.writeln(&format!( "fn render_trait_into(&self, timpl: &{}, writer: &mut ::std::fmt::Write) \ -> ::askama::Result<()> {{", state.trait_name )); self.writeln("#[allow(unused_imports)] use ::std::ops::Deref as HiddenDerefTrait;"); if let Some(nodes) = nodes { self.impl_blocks = true; self.handle(state, nodes, AstLevel::Top); self.flush_ws(&WS(false, false)); self.impl_blocks = false; self.writeln("Ok(())"); } else { self.writeln("self._parent.render_trait_into(self, writer)"); } self.writeln("}"); self.flush_ws(&WS(false, false)); self.writeln("}"); } // Implement `Template` for templates that implement a template trait. fn impl_template_for_trait(&mut self, state: &'a State) { self.write_header(state, "::askama::Template", None); self.writeln("fn render_into(&self, writer: &mut ::std::fmt::Write) \ -> ::askama::Result<()> {"); if state.derived { self.writeln("self._parent.render_trait_into(self, writer)"); } else { self.writeln("self.render_trait_into(self, writer)"); } self.writeln("}"); self.writeln("}"); } // Defines the `TraitFromPathName` trait. fn define_trait(&mut self, state: &'a State) { self.writeln(&format!("pub trait {} {{", state.trait_name)); self.write_block_defs(state); self.writeln(&format!( "fn render_trait_into(&self, timpl: &{}, writer: &mut ::std::fmt::Write) \ -> ::askama::Result<()>;", state.trait_name)); self.writeln("}"); } // Implement iron's Modifier if enabled fn impl_modifier_response(&mut self, state: &'a State) { self.write_header(state, "::askama::iron::Modifier<::askama::iron::Response>", None); self.writeln("fn modify(self, res: &mut ::askama::iron::Response) {"); self.writeln("res.body = Some(Box::new(self.render().unwrap().into_bytes()));"); let ext = state.input.path.extension().map_or("", |s| s.to_str().unwrap_or("")); match ext { "html" | "htm" => { self.writeln("::askama::iron::ContentType::html().0.modify(res);"); }, _ => (), }; self.writeln("}"); self.writeln("}"); } // Implement Rocket's `Responder`. fn impl_responder(&mut self, state: &'a State) { let lifetime = syn::Lifetime::new("'askama", Span::call_site()); let param = syn::GenericParam::Lifetime(syn::LifetimeDef::new(lifetime)); self.write_header(state, "::askama::rocket::Responder<'askama>", Some(vec![param])); self.writeln("fn respond_to(self, _: &::askama::rocket::Request) \ -> ::askama::rocket::Result<'askama> {"); let ext = match state.input.path.extension() { Some(s) => s.to_str().unwrap(), None => "txt", }; self.writeln(&format!("::askama::rocket::respond(&self, {:?})", ext)); self.writeln("}"); self.writeln("}"); } // Writes header for the `impl` for `TraitFromPathName` or `Template` // for the given context struct. fn write_header(&mut self, state: &'a State, target: &str, params: Option>) { let mut generics = state.input.ast.generics.clone(); if let Some(params) = params { for param in params { generics.params.push(param); } } let (_, orig_ty_generics, _) = state.input.ast.generics.split_for_impl(); let (impl_generics, _, where_clause) = generics.split_for_impl(); self.writeln( format!( "{} {} for {}{} {{", quote!(impl#impl_generics), target, state.input.ast.ident, quote!(#orig_ty_generics #where_clause), ).as_ref(), ); } /* Helper methods for handling node types */ fn handle(&mut self, state: &'a State, nodes: &'a [Node], level: AstLevel) { for n in nodes { match *n { Node::Lit(lws, val, rws) => { self.write_lit(lws, val, rws); }, Node::Comment(ref ws) => { self.write_comment(ws); }, Node::Expr(ref ws, ref val) => { self.write_expr(state, ws, val); }, Node::LetDecl(ref ws, ref var) => { self.write_let_decl(ws, var); }, Node::Let(ref ws, ref var, ref val) => { self.write_let(ws, var, val); }, Node::Cond(ref conds, ref ws) => { self.write_cond(state, conds, ws); }, Node::Match(ref ws1, ref expr, inter, ref arms, ref ws2) => { self.write_match(state, ws1, expr, inter, arms, ws2); }, Node::Loop(ref ws1, ref var, ref iter, ref body, ref ws2) => { self.write_loop(state, ws1, var, iter, body, ws2); }, Node::BlockDef(ref ws1, name, _, ref ws2) => { if let AstLevel::Nested = level { panic!("blocks ('{}') are only allowed at the top level of a template \ or another block", name); } self.write_block(ws1, name, ws2); }, Node::Include(ref ws, path) => { self.handle_include(state, ws, path); }, Node::Call(ref ws, scope, name, ref args) => { self.write_call(state, ws, scope, name, args); }, Node::Macro(_, ref m) => { if let AstLevel::Nested = level { panic!("macro blocks only allowed at the top level"); } self.flush_ws(&m.ws1); self.prepare_ws(&m.ws2); }, Node::Import(ref ws, _, _) => { if let AstLevel::Nested = level { panic!("import blocks only allowed at the top level"); } self.handle_ws(ws); }, Node::Extends(_) => { if let AstLevel::Nested = level { panic!("extend blocks only allowed at the top level"); } // No whitespace handling: child template top-level is not used, // except for the blocks defined in it. }, } } } fn write_block_defs(&mut self, state: &'a State) { for b in &state.blocks { if let Node::BlockDef(ref ws1, name, ref nodes, ref ws2) = **b { self.writeln("#[allow(unused_variables)]"); self.writeln(&format!( "fn render_block_{}_into(&self, writer: &mut ::std::fmt::Write) \ -> ::askama::Result<()> {{", name )); self.prepare_ws(ws1); self.locals.push(); self.handle(state, nodes, AstLevel::Block); self.locals.pop(); self.flush_ws(ws2); self.writeln("Ok(())"); self.writeln("}"); } else { panic!("only block definitions allowed here"); } } } fn write_cond(&mut self, state: &'a State, conds: &'a [Cond], ws: &WS) { for (i, &(ref cws, ref cond, ref nodes)) in conds.iter().enumerate() { self.handle_ws(cws); match *cond { Some(ref expr) => { let expr_code = self.visit_expr_root(expr); if i == 0 { self.write("if "); } else { self.dedent(); self.write("} else if "); } self.write(&expr_code); }, None => { self.dedent(); self.write("} else"); }, } self.writeln(" {"); self.locals.push(); self.handle(state, nodes, AstLevel::Nested); self.locals.pop(); } self.handle_ws(ws); self.writeln("}"); } fn write_match(&mut self, state: &'a State, ws1: &WS, expr: &Expr, inter: Option<&'a str>, arms: &'a [When], ws2: &WS) { self.flush_ws(ws1); if let Some(inter) = inter { if !inter.is_empty() { self.next_ws = Some(inter); } } let expr_code = self.visit_expr_root(expr); self.writeln(&format!("match (&{}).deref() {{", expr_code)); for arm in arms { let &(ref ws, ref variant, ref params, ref body) = arm; self.locals.push(); match *variant { Some(ref param) => { self.visit_match_variant(param); }, None => self.write("_"), }; if !params.is_empty() { self.write("("); for (i, param) in params.iter().enumerate() { if let MatchParameter::Name(p) = *param { self.locals.insert(p); } if i > 0 { self.write(", "); } self.visit_match_param(param); } self.write(")"); } self.writeln(" => {"); self.handle_ws(ws); self.handle(state, body, AstLevel::Nested); self.writeln("}"); self.locals.pop(); } self.writeln("}"); self.handle_ws(ws2); } fn write_loop(&mut self, state: &'a State, ws1: &WS, var: &'a Target, iter: &Expr, body: &'a [Node], ws2: &WS) { self.handle_ws(ws1); self.locals.push(); let expr_code = self.visit_expr_root(iter); self.write("for (_loop_index, "); let targets = self.visit_target(var); for name in &targets { self.locals.insert(name); self.write(name); } self.writeln(&format!(") in (&{}).into_iter().enumerate() {{", expr_code)); self.handle(state, body, AstLevel::Nested); self.handle_ws(ws2); self.writeln("}"); self.locals.pop(); } fn write_call(&mut self, state: &'a State, ws: &WS, scope: Option<&str>, name: &str, args: &[Expr]) { let def = state.macros.get(&(scope, name)).unwrap_or_else(|| { if let Some(s) = scope { panic!(format!("macro '{}::{}' not found", s, name)); } else { panic!(format!("macro '{}' not found", name)); } }); self.flush_ws(ws); // Cannot handle_ws() here: whitespace from macro definition comes first self.locals.push(); self.writeln("{"); self.prepare_ws(&def.ws1); for (i, arg) in def.args.iter().enumerate() { let expr_code = self.visit_expr_root(args.get(i) .expect(&format!("macro '{}' takes more than {} arguments", name, i))); self.write(&format!("let {} = &{};", arg, expr_code)); self.locals.insert(arg); } self.handle(state, &def.nodes, AstLevel::Nested); self.flush_ws(&def.ws2); self.writeln("}"); self.locals.pop(); self.prepare_ws(ws); } fn handle_include(&mut self, state: &'a State, ws: &WS, path: &str) { self.flush_ws(ws); let path = path::find_template_from_path(path, Some(&state.input.path)); let src = path::get_template_source(&path); let nodes = parser::parse(&src); let nested = { let mut gen = self.child(); gen.handle(state, &nodes, AstLevel::Nested); gen.buf }; self.buf.push_str(&nested); self.prepare_ws(ws); } fn write_let_decl(&mut self, ws: &WS, var: &'a Target) { self.handle_ws(ws); self.write("let "); match *var { Target::Name(name) => { self.locals.insert(name); self.write(name); }, } self.writeln(";"); } fn write_let(&mut self, ws: &WS, var: &'a Target, val: &Expr) { self.handle_ws(ws); let mut code = String::new(); self.visit_expr(val, &mut code); match *var { Target::Name(name) => { if !self.locals.contains(name) { self.write("let "); self.locals.insert(name); } self.write(name); }, } self.write(&format!(" = {};", &code)); } fn write_block(&mut self, ws1: &WS, name: &str, ws2: &WS) { self.flush_ws(ws1); let ctx = if self.impl_blocks { "timpl" } else { "self" }; self.writeln(&format!("{}.render_block_{}_into(writer)?;", ctx, name)); self.prepare_ws(ws2); } fn write_expr(&mut self, state: &'a State, ws: &WS, s: &Expr) { self.handle_ws(ws); let mut code = String::new(); let wrapped = self.visit_expr(s, &mut code); self.writeln(&format!("let askama_expr = &{};", code)); use self::DisplayWrap::*; use super::input::EscapeMode::*; self.write("writer.write_fmt(format_args!(\"{}\", "); self.write(match (wrapped, &state.input.meta.escaping) { (Wrapped, &Html) | (Wrapped, &None) | (Unwrapped, &None) => "askama_expr", (Unwrapped, &Html) => "&::askama::MarkupDisplay::from(askama_expr)", }); self.writeln("))?;"); } fn write_lit(&mut self, lws: &'a str, val: &str, rws: &'a str) { assert!(self.next_ws.is_none()); if !lws.is_empty() { if self.skip_ws { self.skip_ws = false; } else if val.is_empty() { assert!(rws.is_empty()); self.next_ws = Some(lws); } else { self.writeln(&format!("writer.write_str({:#?})?;", lws)); } } if !val.is_empty() { self.writeln(&format!("writer.write_str({:#?})?;", val)); } if !rws.is_empty() { self.next_ws = Some(rws); } } fn write_comment(&mut self, ws: &WS) { self.handle_ws(ws); } /* Visitor methods for expression types */ fn visit_expr_root(&mut self, expr: &Expr) -> String { let mut code = String::new(); self.visit_expr(expr, &mut code); code } fn visit_expr(&mut self, expr: &Expr, code: &mut String) -> DisplayWrap { match *expr { Expr::NumLit(s) => self.visit_num_lit(s, code), Expr::StrLit(s) => self.visit_str_lit(s, code), Expr::Var(s) => self.visit_var(s, code), Expr::Path(ref path) => self.visit_path(path, code), Expr::Array(ref elements) => self.visit_array(elements, code), Expr::Attr(ref obj, name) => self.visit_attr(obj, name, code), Expr::Filter(name, ref args) => self.visit_filter(name, args, code), Expr::Unary(op, ref inner) => self.visit_unary(op, inner, code), Expr::BinOp(op, ref left, ref right) => self.visit_binop(op, left, right, code), Expr::Group(ref inner) => self.visit_group(inner, code), Expr::MethodCall(ref obj, method, ref args) => { self.visit_method_call(obj, method, args, code) }, } } fn visit_match_variant(&mut self, param: &MatchVariant) -> DisplayWrap { let mut code = String::new(); let wrapped = match *param { MatchVariant::StrLit(s) => self.visit_str_lit(s, &mut code), MatchVariant::NumLit(s) => { // Variants need to be references until match-modes land code.push_str("&"); self.visit_num_lit(s, &mut code) }, MatchVariant::Name(s) => { code.push_str("&"); code.push_str(s); DisplayWrap::Unwrapped }, MatchVariant::Path(ref s) => { code.push_str("&"); code.push_str(&s.join("::")); DisplayWrap::Unwrapped }, }; self.write(&code); wrapped } fn visit_match_param(&mut self, param: &MatchParameter) -> DisplayWrap { let mut code = String::new(); let wrapped = match *param { MatchParameter::NumLit(s) => self.visit_num_lit(s, &mut code), MatchParameter::StrLit(s) => self.visit_str_lit(s, &mut code), MatchParameter::Name(s) => { code.push_str("ref "); code.push_str(s); DisplayWrap::Unwrapped }, }; self.write(&code); wrapped } fn visit_filter(&mut self, name: &str, args: &[Expr], code: &mut String) -> DisplayWrap { if name == "format" { self._visit_format_filter(args, code); return DisplayWrap::Unwrapped; } else if name == "join" { self._visit_join_filter(args, code); return DisplayWrap::Unwrapped; } if filters::BUILT_IN_FILTERS.contains(&name) { code.push_str(&format!("::askama::filters::{}(&", name)); } else { code.push_str(&format!("filters::{}(&", name)); } self._visit_args(args, code); code.push_str(")?"); if name == "safe" || name == "escape" || name == "e" || name == "json" { DisplayWrap::Wrapped } else { DisplayWrap::Unwrapped } } fn _visit_format_filter(&mut self, args: &[Expr], code: &mut String) { code.push_str("format!("); self._visit_args(args, code); code.push_str(")"); } // Force type coercion on first argument to `join` filter (see #39). fn _visit_join_filter(&mut self, args: &[Expr], code: &mut String) { code.push_str("::askama::filters::join((&"); for (i, arg) in args.iter().enumerate() { if i > 0 { code.push_str(", &"); } self.visit_expr(arg, code); if i == 0 { code.push_str(").into_iter()"); } } code.push_str(")?"); } fn _visit_args(&mut self, args: &[Expr], code: &mut String) { for (i, arg) in args.iter().enumerate() { if i > 0 { code.push_str(", &"); } let intercept = match *arg { Expr::Filter(_, _) | Expr::MethodCall(_, _, _) => true, _ => false, }; if intercept { let offset = code.len(); self.visit_expr(arg, code); let idx = self.vars; self.vars += 1; self.writeln(&format!("let var{} = {};", idx, &code[offset..])); code.truncate(offset); code.push_str(&format!("var{}", idx)); } else { self.visit_expr(arg, code); } } } fn visit_attr(&mut self, obj: &Expr, attr: &str, code: &mut String) -> DisplayWrap { if let Expr::Var(name) = *obj { if name == "loop" { code.push_str("_loop_index"); if attr == "index" { code.push_str(" + 1"); return DisplayWrap::Unwrapped; } else if attr == "index0" { return DisplayWrap::Unwrapped; } else { panic!("unknown loop variable"); } } } self.visit_expr(obj, code); code.push_str(&format!(".{}", attr)); DisplayWrap::Unwrapped } fn visit_method_call(&mut self, obj: &Expr, method: &str, args: &[Expr], code: &mut String) -> DisplayWrap { self.visit_expr(obj, code); code.push_str(&format!(".{}(", method)); self._visit_args(args, code); code.push_str(")"); DisplayWrap::Unwrapped } fn visit_unary(&mut self, op: &str, inner: &Expr, code: &mut String) -> DisplayWrap { code.push_str(op); self.visit_expr(inner, code); DisplayWrap::Unwrapped } fn visit_binop(&mut self, op: &str, left: &Expr, right: &Expr, code: &mut String) -> DisplayWrap { self.visit_expr(left, code); code.push_str(&format!(" {} ", op)); self.visit_expr(right, code); DisplayWrap::Unwrapped } fn visit_group(&mut self, inner: &Expr, code: &mut String) -> DisplayWrap { code.push_str("("); self.visit_expr(inner, code); code.push_str(")"); DisplayWrap::Unwrapped } fn visit_array(&mut self, elements: &[Expr], code: &mut String) -> DisplayWrap { code.push_str("["); for (i, el) in elements.iter().enumerate() { if i > 0 { code.push_str(", "); } self.visit_expr(el, code); } code.push_str("]"); DisplayWrap::Unwrapped } fn visit_path(&mut self, path: &[&str], code: &mut String) -> DisplayWrap { for (i, part) in path.iter().enumerate() { if i > 0 { code.push_str("::"); } code.push_str(part); } DisplayWrap::Unwrapped } fn visit_var(&mut self, s: &str, code: &mut String) -> DisplayWrap { if self.locals.contains(s) { code.push_str(s); } else { code.push_str(&format!("self.{}", s)); } DisplayWrap::Unwrapped } fn visit_str_lit(&mut self, s: &str, code: &mut String) -> DisplayWrap { code.push_str(&format!("\"{}\"", s)); DisplayWrap::Unwrapped } fn visit_num_lit(&mut self, s: &str, code: &mut String) -> DisplayWrap { code.push_str(s); DisplayWrap::Unwrapped } fn visit_target_single<'t>(&mut self, name: &'t str) -> Vec<&'t str> { vec![name] } fn visit_target<'t>(&mut self, target: &'t Target) -> Vec<&'t str> { match *target { Target::Name(s) => self.visit_target_single(s), } } /* Helper methods for dealing with whitespace nodes */ // Combines `flush_ws()` and `prepare_ws()` to handle both trailing whitespace from the // preceding literal and leading whitespace from the succeeding literal. fn handle_ws(&mut self, ws: &WS) { self.flush_ws(ws); self.prepare_ws(ws); } // If the previous literal left some trailing whitespace in `next_ws` and the // prefix whitespace suppressor from the given argument, flush that whitespace. // In either case, `next_ws` is reset to `None` (no trailing whitespace). fn flush_ws(&mut self, ws: &WS) { if self.next_ws.is_some() && !ws.0 { let val = self.next_ws.unwrap(); if !val.is_empty() { self.writeln(&format!("writer.write_str({:#?})?;", val)); } } self.next_ws = None; } // Sets `skip_ws` to match the suffix whitespace suppressor from the given // argument, to determine whether to suppress leading whitespace from the // next literal. fn prepare_ws(&mut self, ws: &WS) { self.skip_ws = ws.1; } /* Helper methods for writing to internal buffer */ fn writeln(&mut self, s: &str) { if s.is_empty() { return; } if s == "}" { self.dedent(); } self.write(s); if s.ends_with('{') { self.indent(); } self.buf.push('\n'); self.start = true; } fn write(&mut self, s: &str) { if self.start { for _ in 0..(self.indent * 4) { self.buf.push(' '); } self.start = false; } self.buf.push_str(s); } fn indent(&mut self) { self.indent += 1; } fn dedent(&mut self) { if self.indent == 0 { panic!("dedent() called while indentation == 0"); } self.indent -= 1; } } struct SetChain<'a, T: 'a> where T: cmp::Eq + hash::Hash { parent: Option<&'a SetChain<'a, T>>, scopes: Vec>, } impl<'a, T: 'a> SetChain<'a, T> where T: cmp::Eq + hash::Hash { fn new() -> SetChain<'a, T> { SetChain { parent: None, scopes: vec![HashSet::new()] } } fn with_parent<'p>(parent: &'p SetChain) -> SetChain<'p, T> { SetChain { parent: Some(parent), scopes: vec![HashSet::new()] } } fn contains(&self, val: T) -> bool { self.scopes.iter().rev().any(|set| set.contains(&val)) || match self.parent { Some(set) => set.contains(val), None => false, } } fn insert(&mut self, val: T) { self.scopes.last_mut().unwrap().insert(val); } fn push(&mut self) { self.scopes.push(HashSet::new()); } fn pop(&mut self) { self.scopes.pop().unwrap(); assert!(!self.scopes.is_empty()); } } #[derive(Clone)] enum AstLevel { Top, Block, Nested, } impl Copy for AstLevel {} #[derive(Clone)] enum DisplayWrap { Wrapped, Unwrapped, } impl Copy for DisplayWrap {} type MacroMap<'a> = HashMap<(Option<&'a str>, &'a str), &'a Macro<'a>>;