use super::{get_template_source, Integrations};
use crate::filters;
use crate::heritage::{Context, Heritage};
use crate::input::{Source, TemplateInput};
use crate::parser::{
parse, Cond, Expr, MatchParameter, MatchParameters, MatchVariant, Node, Target, When, WS,
};
use proc_macro2::Span;
use quote::{quote, ToTokens};
use std::collections::{HashMap, HashSet};
use std::path::PathBuf;
use std::{cmp, hash, mem, str};
use syn;
pub fn generate<S: std::hash::BuildHasher>(
input: &TemplateInput,
contexts: &HashMap<&PathBuf, Context, S>,
heritage: &Option<Heritage>,
integrations: Integrations,
) -> String {
Generator::new(input, contexts, heritage, integrations, SetChain::new())
.build(&contexts[&input.path])
}
struct Generator<'a, S: std::hash::BuildHasher> {
// The template input state: original struct AST and attributes
input: &'a TemplateInput<'a>,
// All contexts, keyed by the package-relative template path
contexts: &'a HashMap<&'a PathBuf, Context<'a>, S>,
// The heritage contains references to blocks and their ancestry
heritage: &'a Option<Heritage<'a>>,
// What integrations need to be generated
integrations: Integrations,
// Variables accessible directly from the current scope (not redirected to context)
locals: SetChain<'a, &'a str>,
// Suffix whitespace from the previous literal. Will be flushed to the
// output buffer unless suppressed by whitespace suppression on the next
// non-literal.
next_ws: Option<&'a str>,
// Whitespace suppression from the previous non-literal. Will be used to
// determine whether to flush prefix whitespace from the next literal.
skip_ws: bool,
// If currently in a block, this will contain the name of a potential parent block
super_block: Option<(&'a str, usize)>,
// buffer for writable
buf_writable: Vec<Writable<'a>>,
// Counter for write! hash named arguments
named: usize,
}
impl<'a, S: std::hash::BuildHasher> Generator<'a, S> {
fn new<'n>(
input: &'n TemplateInput,
contexts: &'n HashMap<&'n PathBuf, Context<'n>, S>,
heritage: &'n Option<Heritage>,
integrations: Integrations,
locals: SetChain<'n, &'n str>,
) -> Generator<'n, S> {
Generator {
input,
contexts,
heritage,
integrations,
locals,
next_ws: None,
skip_ws: false,
super_block: None,
buf_writable: vec![],
named: 0,
}
}
fn child(&mut self) -> Generator<'_, S> {
let locals = SetChain::with_parent(&self.locals);
Self::new(
self.input,
self.contexts,
self.heritage,
self.integrations,
locals,
)
}
// Takes a Context and generates the relevant implementations.
fn build(mut self, ctx: &'a Context) -> String {
let mut buf = Buffer::new(0);
if !ctx.blocks.is_empty() {
if let Some(parent) = self.input.parent {
self.deref_to_parent(&mut buf, parent);
}
};
self.impl_template(ctx, &mut buf);
self.impl_display(&mut buf);
if self.integrations.iron {
self.impl_modifier_response(&mut buf);
}
if self.integrations.rocket {
self.impl_rocket_responder(&mut buf);
}
if self.integrations.actix {
self.impl_actix_web_responder(&mut buf);
}
if self.integrations.gotham {
self.impl_gotham_into_response(&mut buf);
}
if self.integrations.warp {
self.impl_warp_reply(&mut buf);
}
buf.buf
}
// Implement `Template` for the given context struct.
fn impl_template(&mut self, ctx: &'a Context, buf: &mut Buffer) {
self.write_header(buf, "::askama::Template", None);
buf.writeln(
"fn render_into(&self, writer: &mut ::std::fmt::Write) -> \
::askama::Result<()> {",
);
// Make sure the compiler understands that the generated code depends on the template files.
for path in self.contexts.keys() {
// Skip the fake path of templates defined in rust source.
let path_is_valid = match self.input.source {
Source::Path(_) => true,
Source::Source(_) => *path != &self.input.path,
};
if path_is_valid {
let path = path.to_str().unwrap();
buf.writeln(
"e! {
include_bytes!(#path);
}
.to_string(),
);
}
}
let size_hint = if let Some(heritage) = self.heritage {
self.handle(heritage.root, heritage.root.nodes, buf, AstLevel::Top)
} else {
self.handle(ctx, &ctx.nodes, buf, AstLevel::Top)
};
self.flush_ws(WS(false, false));
buf.writeln("Ok(())");
buf.writeln("}");
buf.writeln("fn extension(&self) -> Option<&'static str> {");
buf.writeln(&format!(
"{:?}",
self.input.path.extension().map(|s| s.to_str().unwrap())
));
buf.writeln("}");
buf.writeln("fn size_hint(&self) -> usize {");
buf.writeln(&format!("{}", size_hint));
buf.writeln("}");
buf.writeln("}");
self.write_header(buf, "::askama::SizedTemplate", None);
buf.writeln("fn size_hint() -> usize {");
buf.writeln(&format!("{}", size_hint));
buf.writeln("}");
buf.writeln("fn extension() -> Option<&'static str> {");
buf.writeln(&format!(
"{:?}",
self.input.path.extension().map(|s| s.to_str().unwrap())
));
buf.writeln("}");
buf.writeln("}");
}
// Implement `Deref<Parent>` for an inheriting context struct.
fn deref_to_parent(&mut self, buf: &mut Buffer, parent_type: &syn::Type) {
self.write_header(buf, "::std::ops::Deref", None);
buf.writeln(&format!(
"type Target = {};",
parent_type.into_token_stream()
));
buf.writeln("fn deref(&self) -> &Self::Target {");
buf.writeln("&self._parent");
buf.writeln("}");
buf.writeln("}");
}
// Implement `Display` for the given context struct.
fn impl_display(&mut self, buf: &mut Buffer) {
self.write_header(buf, "::std::fmt::Display", None);
buf.writeln("fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {");
buf.writeln("::askama::Template::render_into(self, f).map_err(|_| ::std::fmt::Error {})");
buf.writeln("}");
buf.writeln("}");
}
// Implement iron's Modifier<Response> if enabled
fn impl_modifier_response(&mut self, buf: &mut Buffer) {
self.write_header(
buf,
"::askama_iron::Modifier<::askama_iron::Response>",
None,
);
buf.writeln("fn modify(self, res: &mut ::askama_iron::Response) {");
buf.writeln(
"res.body = Some(Box::new(::askama_iron::Template::render(&self).unwrap().into_bytes()));",
);
let ext = self
.input
.path
.extension()
.map_or("", |s| s.to_str().unwrap_or(""));
match ext {
"html" | "htm" => {
buf.writeln("::askama_iron::ContentType::html().0.modify(res);");
}
_ => (),
};
buf.writeln("}");
buf.writeln("}");
}
// Implement Rocket's `Responder`.
fn impl_rocket_responder(&mut self, buf: &mut Buffer) {
let lifetime = syn::Lifetime::new("'askama", Span::call_site());
let param = syn::GenericParam::Lifetime(syn::LifetimeDef::new(lifetime));
self.write_header(
buf,
"::askama_rocket::Responder<'askama>",
Some(vec![param]),
);
buf.writeln(
"fn respond_to(self, _: &::askama_rocket::Request) \
-> ::askama_rocket::Result<'askama> {",
);
let ext = match self.input.path.extension() {
Some(s) => s.to_str().unwrap(),
None => "txt",
};
buf.writeln(&format!("::askama_rocket::respond(&self, {:?})", ext));
buf.writeln("}");
buf.writeln("}");
}
// Implement Actix-web's `Responder`.
fn impl_actix_web_responder(&mut self, buf: &mut Buffer) {
self.write_header(buf, "::actix_web::Responder", None);
buf.writeln("type Future = ::futures::future::Ready<::std::result::Result<::actix_web::HttpResponse, Self::Error>>;");
buf.writeln("type Error = ::actix_web::Error;");
buf.writeln(
"fn respond_to(self, _req: &::actix_web::HttpRequest) \
-> Self::Future {",
);
buf.writeln("use ::askama_actix::TemplateIntoResponse;");
buf.writeln("::futures::future::ready(self.into_response())");
buf.writeln("}");
buf.writeln("}");
}
// Implement gotham's `IntoResponse`.
fn impl_gotham_into_response(&mut self, buf: &mut Buffer) {
self.write_header(buf, "::askama_gotham::IntoResponse", None);
buf.writeln(
"fn into_response(self, _state: &::askama_gotham::State)\
-> ::askama_gotham::Response<::askama_gotham::Body> {",
);
let ext = match self.input.path.extension() {
Some(s) => s.to_str().unwrap(),
None => "txt",
};
buf.writeln(&format!("::askama_gotham::respond(&self, {:?})", ext));
buf.writeln("}");
buf.writeln("}");
}
fn impl_warp_reply(&mut self, buf: &mut Buffer) {
self.write_header(buf, "::askama_warp::warp::reply::Reply", None);
buf.writeln("fn into_response(self) -> ::askama_warp::warp::reply::Response {");
let ext = self
.input
.path
.extension()
.and_then(|s| s.to_str())
.unwrap_or("txt");
buf.writeln(&format!("::askama_warp::reply(&self, {:?})", ext));
buf.writeln("}");
buf.writeln("}");
}
// Writes header for the `impl` for `TraitFromPathName` or `Template`
// for the given context struct.
fn write_header(
&mut self,
buf: &mut Buffer,
target: &str,
params: Option<Vec<syn::GenericParam>>,
) {
let mut generics = self.input.ast.generics.clone();
if let Some(params) = params {
for param in params {
generics.params.push(param);
}
}
let (_, orig_ty_generics, _) = self.input.ast.generics.split_for_impl();
let (impl_generics, _, where_clause) = generics.split_for_impl();
buf.writeln(
format!(
"{} {} for {}{} {{",
quote!(impl#impl_generics),
target,
self.input.ast.ident,
quote!(#orig_ty_generics #where_clause),
)
.as_ref(),
);
}
/* Helper methods for handling node types */
fn handle(
&mut self,
ctx: &'a Context,
nodes: &'a [Node],
buf: &mut Buffer,
level: AstLevel,
) -> usize {
let mut size_hint = 0;
for n in nodes {
match *n {
Node::Lit(lws, val, rws) => {
self.visit_lit(lws, val, rws);
}
Node::Comment(ws) => {
self.write_comment(ws);
}
Node::Expr(ws, ref val) => {
self.write_expr(ws, val);
}
Node::LetDecl(ws, ref var) => {
self.write_let_decl(buf, ws, var);
}
Node::Let(ws, ref var, ref val) => {
self.write_let(buf, ws, var, val);
}
Node::Cond(ref conds, ws) => {
self.write_cond(ctx, buf, conds, ws);
}
Node::Match(ws1, ref expr, inter, ref arms, ws2) => {
self.write_match(ctx, buf, ws1, expr, inter, arms, ws2);
}
Node::Loop(ws1, ref var, ref iter, ref body, ws2) => {
self.write_loop(ctx, buf, ws1, var, iter, body, ws2);
}
Node::BlockDef(ws1, name, _, ws2) => {
if AstLevel::Nested == level {
panic!(
"blocks ('{}') are only allowed at the top level of a template \
or another block",
name
);
}
let outer = WS(ws1.0, ws2.1);
self.write_block(buf, Some(name), outer);
}
Node::Include(ws, path) => {
size_hint += self.handle_include(ctx, buf, ws, path);
}
Node::Call(ws, scope, name, ref args) => {
size_hint += self.write_call(ctx, buf, ws, scope, name, args);
}
Node::Macro(_, ref m) => {
if level != AstLevel::Top {
panic!("macro blocks only allowed at the top level");
}
self.flush_ws(m.ws1);
self.prepare_ws(m.ws2);
}
Node::Raw(ws1, contents, ws2) => {
self.handle_ws(ws1);
self.buf_writable.push(Writable::Lit(contents));
self.handle_ws(ws2);
}
Node::Import(ws, _, _) => {
if level != AstLevel::Top {
panic!("import blocks only allowed at the top level");
}
self.handle_ws(ws);
}
Node::Extends(_) => {
if level != AstLevel::Top {
panic!("extend blocks only allowed at the top level");
}
// No whitespace handling: child template top-level is not used,
// except for the blocks defined in it.
}
}
}
if AstLevel::Top == level {
size_hint += self.write_buf_writable(buf);
}
size_hint
}
fn write_cond(
&mut self,
ctx: &'a Context,
buf: &mut Buffer,
conds: &'a [Cond],
ws: WS,
) -> usize {
let mut flushed = 0;
let mut arm_sizes = Vec::new();
let mut has_else = false;
for (i, &(cws, ref cond, ref nodes)) in conds.iter().enumerate() {
self.handle_ws(cws);
if arm_sizes.is_empty() {
flushed += self.write_buf_writable(buf);
}
let mut arm_size = 0;
match *cond {
Some(ref expr) => {
if i == 0 {
buf.write("if ");
} else {
buf.dedent();
buf.write("} else if ");
}
let expr_code = self.visit_expr_root(expr);
buf.write(&expr_code);
}
None => {
buf.dedent();
buf.write("} else");
has_else = true;
}
}
buf.writeln(" {");
self.locals.push();
arm_size += self.handle(ctx, nodes, buf, AstLevel::Nested);
arm_size += self.write_buf_writable(buf);
arm_sizes.push(arm_size);
self.locals.pop();
}
self.handle_ws(ws);
buf.writeln("}");
if !has_else {
arm_sizes.push(0);
}
flushed + median(&mut arm_sizes)
}
#[allow(clippy::too_many_arguments)]
fn write_match(
&mut self,
ctx: &'a Context,
buf: &mut Buffer,
ws1: WS,
expr: &Expr,
inter: Option<&'a str>,
arms: &'a [When],
ws2: WS,
) -> usize {
self.flush_ws(ws1);
let flushed = self.write_buf_writable(buf);
let mut arm_sizes = Vec::new();
if let Some(inter) = inter {
if !inter.is_empty() {
self.next_ws = Some(inter);
}
}
let expr_code = self.visit_expr_root(expr);
buf.writeln(&format!("match &{} {{", expr_code));
for arm in arms {
let &(ws, ref variant, ref params, ref body) = arm;
self.locals.push();
match *variant {
Some(ref param) => {
self.visit_match_variant(buf, param);
}
None => buf.write("_"),
};
match params {
MatchParameters::Simple(params) => {
if !params.is_empty() {
buf.write("(");
for (i, param) in params.iter().enumerate() {
if let MatchParameter::Name(p) = *param {
self.locals.insert(p);
}
if i > 0 {
buf.write(", ");
}
self.visit_match_param(buf, param);
}
buf.write(")");
}
}
MatchParameters::Named(params) => {
buf.write("{");
for (i, param) in params.iter().enumerate() {
if let Some(MatchParameter::Name(p)) = param.1 {
self.locals.insert(p);
} else {
self.locals.insert(param.0);
}
if i > 0 {
buf.write(", ");
}
buf.write(param.0);
if let Some(param) = ¶m.1 {
buf.write(":");
self.visit_match_param(buf, ¶m);
}
}
buf.write("}");
}
}
buf.writeln(" => {");
self.handle_ws(ws);
let arm_size = self.handle(ctx, body, buf, AstLevel::Nested);
arm_sizes.push(arm_size + self.write_buf_writable(buf));
buf.writeln("}");
self.locals.pop();
}
buf.writeln("}");
self.handle_ws(ws2);
flushed + median(&mut arm_sizes)
}
#[allow(clippy::too_many_arguments)]
fn write_loop(
&mut self,
ctx: &'a Context,
buf: &mut Buffer,
ws1: WS,
var: &'a Target,
iter: &Expr,
body: &'a [Node],
ws2: WS,
) -> usize {
self.handle_ws(ws1);
self.locals.push();
let expr_code = self.visit_expr_root(iter);
let flushed = self.write_buf_writable(buf);
buf.write("for (");
self.visit_target(buf, var);
match iter {
Expr::Range(_, _, _) => buf.writeln(&format!(
", _loop_item) in ::askama::helpers::TemplateLoop::new({}) {{",
expr_code
)),
_ => buf.writeln(&format!(
", _loop_item) in ::askama::helpers::TemplateLoop::new((&{}).into_iter()) {{",
expr_code
)),
};
let mut size_hint = self.handle(ctx, body, buf, AstLevel::Nested);
self.handle_ws(ws2);
size_hint += self.write_buf_writable(buf);
buf.writeln("}");
self.locals.pop();
flushed + (size_hint * 3)
}
fn write_call(
&mut self,
ctx: &'a Context,
buf: &mut Buffer,
ws: WS,
scope: Option<&str>,
name: &str,
args: &[Expr],
) -> usize {
if name == "super" {
return self.write_block(buf, None, ws);
}
let (def, own_ctx) = if let Some(s) = scope {
let path = ctx
.imports
.get(s)
.unwrap_or_else(|| panic!("no import found for scope '{}'", s));
let mctx = self
.contexts
.get(path)
.unwrap_or_else(|| panic!("context for '{:?}' not found", path));
(
mctx.macros
.get(name)
.unwrap_or_else(|| panic!("macro '{}' not found in scope '{}'", s, name)),
mctx,
)
} else {
(
ctx.macros
.get(name)
.unwrap_or_else(|| panic!("macro '{}' not found", name)),
ctx,
)
};
self.flush_ws(ws); // Cannot handle_ws() here: whitespace from macro definition comes first
self.locals.push();
self.write_buf_writable(buf);
buf.writeln("{");
self.prepare_ws(def.ws1);
for (i, arg) in def.args.iter().enumerate() {
let expr_code = self.visit_expr_root(
args.get(i)
.unwrap_or_else(|| panic!("macro '{}' takes more than {} arguments", name, i)),
);
buf.writeln(&format!("let {} = &{};", arg, expr_code));
self.locals.insert(arg);
}
let mut size_hint = self.handle(own_ctx, &def.nodes, buf, AstLevel::Nested);
self.flush_ws(def.ws2);
size_hint += self.write_buf_writable(buf);
buf.writeln("}");
self.locals.pop();
self.prepare_ws(ws);
size_hint
}
fn handle_include(&mut self, ctx: &'a Context, buf: &mut Buffer, ws: WS, path: &str) -> usize {
self.flush_ws(ws);
self.write_buf_writable(buf);
let path = self
.input
.config
.find_template(path, Some(&self.input.path));
let src = get_template_source(&path);
let nodes = parse(&src, self.input.syntax);
// Make sure the compiler understands that the generated code depends on the template file.
{
let path = path.to_str().unwrap();
buf.writeln(
"e! {
include_bytes!(#path);
}
.to_string(),
);
}
let size_hint = {
// Since nodes must not outlive the Generator, we instantiate
// a nested Generator here to handle the include's nodes.
let mut gen = self.child();
let mut size_hint = gen.handle(ctx, &nodes, buf, AstLevel::Nested);
size_hint += gen.write_buf_writable(buf);
size_hint
};
self.prepare_ws(ws);
size_hint
}
fn write_let_decl(&mut self, buf: &mut Buffer, ws: WS, var: &'a Target) {
self.handle_ws(ws);
self.write_buf_writable(buf);
buf.write("let ");
match *var {
Target::Name(name) => {
self.locals.insert(name);
buf.write(name);
}
Target::Tuple(ref targets) => {
buf.write("(");
for name in targets {
self.locals.insert(name);
buf.write(name);
buf.write(",");
}
buf.write(")");
}
}
buf.writeln(";");
}
fn write_let(&mut self, buf: &mut Buffer, ws: WS, var: &'a Target, val: &Expr) {
self.handle_ws(ws);
let mut expr_buf = Buffer::new(0);
self.visit_expr(&mut expr_buf, val);
match *var {
Target::Name(name) => {
if !self.locals.contains(name) {
buf.write("let ");
self.locals.insert(name);
}
buf.write(name);
}
Target::Tuple(ref targets) => {
buf.write("let (");
for name in targets {
self.locals.insert(name);
buf.write(name);
buf.write(",");
}
buf.write(")");
}
}
buf.writeln(&format!(" = {};", &expr_buf.buf));
}
// If `name` is `Some`, this is a call to a block definition, and we have to find
// the first block for that name from the ancestry chain. If name is `None`, this
// is from a `super()` call, and we can get the name from `self.super_block`.
fn write_block(&mut self, buf: &mut Buffer, name: Option<&'a str>, outer: WS) -> usize {
// Flush preceding whitespace according to the outer WS spec
self.flush_ws(outer);
let prev_block = self.super_block;
let cur = match (name, prev_block) {
// The top-level context contains a block definition
(Some(cur_name), None) => (cur_name, 0),
// A block definition contains a block definition of the same name
(Some(cur_name), Some((prev_name, _))) if cur_name == prev_name => {
panic!("cannot define recursive blocks ({})", cur_name)
}
// A block definition contains a definition of another block
(Some(cur_name), Some((_, _))) => (cur_name, 0),
// `super()` was called inside a block
(None, Some((prev_name, gen))) => (prev_name, gen + 1),
// `super()` is called from outside a block
(None, None) => panic!("cannot call 'super()' outside block"),
};
self.super_block = Some(cur);
// Get the block definition from the heritage chain
let heritage = self
.heritage
.as_ref()
.unwrap_or_else(|| panic!("no block ancestors available"));
let (ctx, def) = heritage.blocks[cur.0]
.get(cur.1)
.unwrap_or_else(|| match name {
None => panic!("no super() block found for block '{}'", cur.0),
Some(name) => panic!("no block found for name '{}'", name),
});
// Get the nodes and whitespace suppression data from the block definition
let (ws1, nodes, ws2) = if let Node::BlockDef(ws1, _, nodes, ws2) = def {
(ws1, nodes, ws2)
} else {
unreachable!()
};
// Handle inner whitespace suppression spec and process block nodes
self.prepare_ws(*ws1);
self.locals.push();
let size_hint = self.handle(ctx, nodes, buf, AstLevel::Block);
if !self.locals.is_current_empty() {
// Need to flush the buffer before popping the variable stack
self.write_buf_writable(buf);
}
self.locals.pop();
self.flush_ws(*ws2);
// Restore original block context and set whitespace suppression for
// succeeding whitespace according to the outer WS spec
self.super_block = prev_block;
self.prepare_ws(outer);
size_hint
}
fn write_expr(&mut self, ws: WS, s: &'a Expr<'a>) {
self.handle_ws(ws);
self.buf_writable.push(Writable::Expr(s));
}
// Write expression buffer and empty
fn write_buf_writable(&mut self, buf: &mut Buffer) -> usize {
if self.buf_writable.is_empty() {
return 0;
}
if self.buf_writable.iter().all(|w| match w {
Writable::Lit(_) => true,
_ => false,
}) {
let mut buf_lit = Buffer::new(0);
for s in mem::replace(&mut self.buf_writable, vec![]) {
if let Writable::Lit(s) = s {
buf_lit.write(s);
};
}
buf.writeln(&format!("writer.write_str({:#?})?;", &buf_lit.buf));
return buf_lit.buf.len();
}
let mut size_hint = 0;
let mut buf_format = Buffer::new(0);
let mut buf_expr = Buffer::new(buf.indent + 1);
let mut expr_cache = HashMap::with_capacity(self.buf_writable.len());
for s in mem::replace(&mut self.buf_writable, vec![]) {
match s {
Writable::Lit(s) => {
buf_format.write(&s.replace("{", "{{").replace("}", "}}"));
size_hint += s.len();
}
Writable::Expr(s) => {
use self::DisplayWrap::*;
let mut expr_buf = Buffer::new(0);
let wrapped = self.visit_expr(&mut expr_buf, s);
let expression = match wrapped {
Wrapped => expr_buf.buf,
Unwrapped => format!(
"::askama::MarkupDisplay::new_unsafe(&{}, {})",
expr_buf.buf, self.input.escaper
),
};
let id = expr_cache.entry(expression.clone()).or_insert_with(|| {
let id = self.named;
self.named += 1;
buf_expr.write(&format!("expr{} = ", id));
buf_expr.write("&");
buf_expr.write(&expression);
buf_expr.writeln(",");
id
});
buf_format.write(&format!("{{expr{}}}", id));
size_hint += 3;
}
}
}
buf.writeln("write!(");
buf.indent();
buf.writeln("writer,");
buf.writeln(&format!("{:#?},", &buf_format.buf));
buf.writeln(buf_expr.buf.trim());
buf.dedent();
buf.writeln(")?;");
size_hint
}
fn visit_lit(&mut self, lws: &'a str, val: &'a str, rws: &'a str) {
assert!(self.next_ws.is_none());
if !lws.is_empty() {
if self.skip_ws {
self.skip_ws = false;
} else if val.is_empty() {
assert!(rws.is_empty());
self.next_ws = Some(lws);
} else {
self.buf_writable.push(Writable::Lit(lws));
}
}
if !val.is_empty() {
self.buf_writable.push(Writable::Lit(val));
}
if !rws.is_empty() {
self.next_ws = Some(rws);
}
}
fn write_comment(&mut self, ws: WS) {
self.handle_ws(ws);
}
/* Visitor methods for expression types */
fn visit_expr_root(&mut self, expr: &Expr) -> String {
let mut buf = Buffer::new(0);
self.visit_expr(&mut buf, expr);
buf.buf
}
fn visit_expr(&mut self, buf: &mut Buffer, expr: &Expr) -> DisplayWrap {
match *expr {
Expr::BoolLit(s) => self.visit_bool_lit(buf, s),
Expr::NumLit(s) => self.visit_num_lit(buf, s),
Expr::StrLit(s) => self.visit_str_lit(buf, s),
Expr::CharLit(s) => self.visit_char_lit(buf, s),
Expr::Var(s) => self.visit_var(buf, s),
Expr::Path(ref path) => self.visit_path(buf, path),
Expr::Array(ref elements) => self.visit_array(buf, elements),
Expr::Attr(ref obj, name) => self.visit_attr(buf, obj, name),
Expr::Index(ref obj, ref key) => self.visit_index(buf, obj, key),
Expr::Filter(name, ref args) => self.visit_filter(buf, name, args),
Expr::Unary(op, ref inner) => self.visit_unary(buf, op, inner),
Expr::BinOp(op, ref left, ref right) => self.visit_binop(buf, op, left, right),
Expr::Range(op, ref left, ref right) => self.visit_range(buf, op, left, right),
Expr::Group(ref inner) => self.visit_group(buf, inner),
Expr::MethodCall(ref obj, method, ref args) => {
self.visit_method_call(buf, obj, method, args)
}
Expr::RustMacro(name, args) => self.visit_rust_macro(buf, name, args),
}
}
fn visit_rust_macro(&mut self, buf: &mut Buffer, name: &str, args: &str) -> DisplayWrap {
buf.write(name);
buf.write("!(");
buf.write(args);
buf.write(")");
DisplayWrap::Unwrapped
}
fn visit_match_variant(&mut self, buf: &mut Buffer, param: &MatchVariant) -> DisplayWrap {
let mut expr_buf = Buffer::new(0);
let wrapped = match *param {
MatchVariant::StrLit(s) => {
expr_buf.write("&");
self.visit_str_lit(&mut expr_buf, s)
}
MatchVariant::CharLit(s) => self.visit_char_lit(&mut expr_buf, s),
MatchVariant::NumLit(s) => self.visit_num_lit(&mut expr_buf, s),
MatchVariant::Name(s) => {
expr_buf.write(s);
DisplayWrap::Unwrapped
}
MatchVariant::Path(ref s) => {
expr_buf.write(&s.join("::"));
DisplayWrap::Unwrapped
}
};
buf.write(&expr_buf.buf);
wrapped
}
fn visit_match_param(&mut self, buf: &mut Buffer, param: &MatchParameter) -> DisplayWrap {
let mut expr_buf = Buffer::new(0);
let wrapped = match *param {
MatchParameter::NumLit(s) => self.visit_num_lit(&mut expr_buf, s),
MatchParameter::StrLit(s) => self.visit_str_lit(&mut expr_buf, s),
MatchParameter::CharLit(s) => self.visit_char_lit(&mut expr_buf, s),
MatchParameter::Name(s) => {
expr_buf.write(s);
DisplayWrap::Unwrapped
}
};
buf.write(&expr_buf.buf);
wrapped
}
fn visit_filter(&mut self, buf: &mut Buffer, name: &str, args: &[Expr]) -> DisplayWrap {
if name == "format" {
self._visit_format_filter(buf, args);
return DisplayWrap::Unwrapped;
} else if name == "join" {
self._visit_join_filter(buf, args);
return DisplayWrap::Unwrapped;
}
if name == "escape" || name == "safe" || name == "e" || name == "json" {
buf.write(&format!(
"::askama::filters::{}({}, &",
name, self.input.escaper
));
} else if filters::BUILT_IN_FILTERS.contains(&name) {
buf.write(&format!("::askama::filters::{}(&", name));
} else {
buf.write(&format!("filters::{}(&", name));
}
self._visit_args(buf, args);
buf.write(")?");
if name == "safe" || name == "escape" || name == "e" || name == "json" {
DisplayWrap::Wrapped
} else {
DisplayWrap::Unwrapped
}
}
fn _visit_format_filter(&mut self, buf: &mut Buffer, args: &[Expr]) {
buf.write("format!(");
self._visit_args(buf, args);
buf.write(")");
}
// Force type coercion on first argument to `join` filter (see #39).
fn _visit_join_filter(&mut self, buf: &mut Buffer, args: &[Expr]) {
buf.write("::askama::filters::join((&");
for (i, arg) in args.iter().enumerate() {
if i > 0 {
buf.write(", &");
}
self.visit_expr(buf, arg);
if i == 0 {
buf.write(").into_iter()");
}
}
buf.write(")?");
}
fn _visit_args(&mut self, buf: &mut Buffer, args: &[Expr]) {
for (i, arg) in args.iter().enumerate() {
if i > 0 {
buf.write(", &");
}
let scoped = match *arg {
Expr::Filter(_, _) | Expr::MethodCall(_, _, _) => true,
_ => false,
};
if scoped {
buf.writeln("{");
self.visit_expr(buf, arg);
buf.writeln("}");
} else {
self.visit_expr(buf, arg);
}
}
}
fn visit_attr(&mut self, buf: &mut Buffer, obj: &Expr, attr: &str) -> DisplayWrap {
if let Expr::Var(name) = *obj {
if name == "loop" {
if attr == "index" {
buf.write("(_loop_item.index + 1)");
return DisplayWrap::Unwrapped;
} else if attr == "index0" {
buf.write("_loop_item.index");
return DisplayWrap::Unwrapped;
} else if attr == "first" {
buf.write("_loop_item.first");
return DisplayWrap::Unwrapped;
} else if attr == "last" {
buf.write("_loop_item.last");
return DisplayWrap::Unwrapped;
} else {
panic!("unknown loop variable");
}
}
}
self.visit_expr(buf, obj);
buf.write(&format!(".{}", attr));
DisplayWrap::Unwrapped
}
fn visit_index(&mut self, buf: &mut Buffer, obj: &Expr, key: &Expr) -> DisplayWrap {
buf.write("&");
self.visit_expr(buf, obj);
buf.write("[");
self.visit_expr(buf, key);
buf.write("]");
DisplayWrap::Unwrapped
}
fn visit_method_call(
&mut self,
buf: &mut Buffer,
obj: &Expr,
method: &str,
args: &[Expr],
) -> DisplayWrap {
if let Expr::Var("self") = obj {
buf.write("self");
} else {
self.visit_expr(buf, obj);
}
buf.write(&format!(".{}(", method));
self._visit_args(buf, args);
buf.write(")");
DisplayWrap::Unwrapped
}
fn visit_unary(&mut self, buf: &mut Buffer, op: &str, inner: &Expr) -> DisplayWrap {
buf.write(op);
self.visit_expr(buf, inner);
DisplayWrap::Unwrapped
}
fn visit_range(
&mut self,
buf: &mut Buffer,
op: &str,
left: &Option<Box<Expr>>,
right: &Option<Box<Expr>>,
) -> DisplayWrap {
if let Some(left) = left {
self.visit_expr(buf, left);
}
buf.write(op);
if let Some(right) = right {
self.visit_expr(buf, right);
}
DisplayWrap::Unwrapped
}
fn visit_binop(
&mut self,
buf: &mut Buffer,
op: &str,
left: &Expr,
right: &Expr,
) -> DisplayWrap {
self.visit_expr(buf, left);
buf.write(&format!(" {} ", op));
self.visit_expr(buf, right);
DisplayWrap::Unwrapped
}
fn visit_group(&mut self, buf: &mut Buffer, inner: &Expr) -> DisplayWrap {
buf.write("(");
self.visit_expr(buf, inner);
buf.write(")");
DisplayWrap::Unwrapped
}
fn visit_array(&mut self, buf: &mut Buffer, elements: &[Expr]) -> DisplayWrap {
buf.write("[");
for (i, el) in elements.iter().enumerate() {
if i > 0 {
buf.write(", ");
}
self.visit_expr(buf, el);
}
buf.write("]");
DisplayWrap::Unwrapped
}
fn visit_path(&mut self, buf: &mut Buffer, path: &[&str]) -> DisplayWrap {
for (i, part) in path.iter().enumerate() {
if i > 0 {
buf.write("::");
}
buf.write(part);
}
DisplayWrap::Unwrapped
}
fn visit_var(&mut self, buf: &mut Buffer, s: &str) -> DisplayWrap {
if self.locals.contains(s) || s == "self" {
buf.write(s);
} else {
buf.write("self.");
buf.write(s);
}
DisplayWrap::Unwrapped
}
fn visit_bool_lit(&mut self, buf: &mut Buffer, s: &str) -> DisplayWrap {
buf.write(s);
DisplayWrap::Unwrapped
}
fn visit_str_lit(&mut self, buf: &mut Buffer, s: &str) -> DisplayWrap {
buf.write(&format!("\"{}\"", s));
DisplayWrap::Unwrapped
}
fn visit_char_lit(&mut self, buf: &mut Buffer, s: &str) -> DisplayWrap {
buf.write(&format!("'{}'", s));
DisplayWrap::Unwrapped
}
fn visit_num_lit(&mut self, buf: &mut Buffer, s: &str) -> DisplayWrap {
buf.write(s);
DisplayWrap::Unwrapped
}
fn visit_target(&mut self, buf: &mut Buffer, target: &'a Target) {
match *target {
Target::Name(name) => {
self.locals.insert(name);
buf.write(name);
}
Target::Tuple(ref targets) => {
buf.write("(");
for name in targets {
self.locals.insert(name);
buf.write(name);
buf.write(",");
}
buf.write(")");
}
}
}
/* Helper methods for dealing with whitespace nodes */
// Combines `flush_ws()` and `prepare_ws()` to handle both trailing whitespace from the
// preceding literal and leading whitespace from the succeeding literal.
fn handle_ws(&mut self, ws: WS) {
self.flush_ws(ws);
self.prepare_ws(ws);
}
// If the previous literal left some trailing whitespace in `next_ws` and the
// prefix whitespace suppressor from the given argument, flush that whitespace.
// In either case, `next_ws` is reset to `None` (no trailing whitespace).
fn flush_ws(&mut self, ws: WS) {
if self.next_ws.is_some() && !ws.0 {
let val = self.next_ws.unwrap();
if !val.is_empty() {
self.buf_writable.push(Writable::Lit(val));
}
}
self.next_ws = None;
}
// Sets `skip_ws` to match the suffix whitespace suppressor from the given
// argument, to determine whether to suppress leading whitespace from the
// next literal.
fn prepare_ws(&mut self, ws: WS) {
self.skip_ws = ws.1;
}
}
struct Buffer {
// The buffer to generate the code into
buf: String,
// The current level of indentation (in spaces)
indent: u8,
// Whether the output buffer is currently at the start of a line
start: bool,
}
impl Buffer {
fn new(indent: u8) -> Self {
Self {
buf: String::new(),
indent,
start: true,
}
}
fn writeln(&mut self, s: &str) {
if s == "}" {
self.dedent();
}
if !s.is_empty() {
self.write(s);
}
self.buf.push('\n');
if s.ends_with('{') {
self.indent();
}
self.start = true;
}
fn write(&mut self, s: &str) {
if self.start {
for _ in 0..(self.indent * 4) {
self.buf.push(' ');
}
self.start = false;
}
self.buf.push_str(s);
}
fn indent(&mut self) {
self.indent += 1;
}
fn dedent(&mut self) {
if self.indent == 0 {
panic!("dedent() called while indentation == 0");
}
self.indent -= 1;
}
}
#[derive(Debug)]
struct SetChain<'a, T: 'a>
where
T: cmp::Eq + hash::Hash,
{
parent: Option<&'a SetChain<'a, T>>,
scopes: Vec<HashSet<T>>,
}
impl<'a, T: 'a> SetChain<'a, T>
where
T: cmp::Eq + hash::Hash,
{
fn new() -> SetChain<'a, T> {
SetChain {
parent: None,
scopes: vec![HashSet::new()],
}
}
fn with_parent<'p>(parent: &'p SetChain<T>) -> SetChain<'p, T> {
SetChain {
parent: Some(parent),
scopes: vec![HashSet::new()],
}
}
fn contains(&self, val: T) -> bool {
self.scopes.iter().rev().any(|set| set.contains(&val))
|| match self.parent {
Some(set) => set.contains(val),
None => false,
}
}
fn is_current_empty(&self) -> bool {
self.scopes.last().unwrap().is_empty()
}
fn insert(&mut self, val: T) {
self.scopes.last_mut().unwrap().insert(val);
}
fn push(&mut self) {
self.scopes.push(HashSet::new());
}
fn pop(&mut self) {
self.scopes.pop().unwrap();
assert!(!self.scopes.is_empty());
}
}
fn median(sizes: &mut [usize]) -> usize {
sizes.sort();
if sizes.len() % 2 == 1 {
sizes[sizes.len() / 2]
} else {
(sizes[sizes.len() / 2 - 1] + sizes[sizes.len() / 2]) / 2
}
}
#[derive(Clone, PartialEq)]
enum AstLevel {
Top,
Block,
Nested,
}
impl Copy for AstLevel {}
#[derive(Clone)]
enum DisplayWrap {
Wrapped,
Unwrapped,
}
impl Copy for DisplayWrap {}
#[derive(Debug)]
enum Writable<'a> {
Lit(&'a str),
Expr(&'a Expr<'a>),
}