use crate::config::{get_template_source, read_config_file, Config, WhitespaceHandling};
use crate::heritage::{Context, Heritage};
use crate::input::{Print, Source, TemplateInput};
use crate::CompileError;
use parser::{Cond, CondTest, Expr, Loop, Node, Parsed, Target, When, Whitespace, Ws};
use proc_macro::TokenStream;
use quote::{quote, ToTokens};
use syn::punctuated::Punctuated;
use std::collections::hash_map::{Entry, HashMap};
use std::path::{Path, PathBuf};
use std::{cmp, hash, mem, str};
/// The actual implementation for askama_derive::Template
pub(crate) fn derive_template(input: TokenStream) -> TokenStream {
let ast: syn::DeriveInput = syn::parse(input).unwrap();
match build_template(&ast) {
Ok(source) => source.parse().unwrap(),
Err(e) => e.into_compile_error(),
}
}
/// Takes a `syn::DeriveInput` and generates source code for it
///
/// Reads the metadata from the `template()` attribute to get the template
/// metadata, then fetches the source from the filesystem. The source is
/// parsed, and the parse tree is fed to the code generator. Will print
/// the parse tree and/or generated source according to the `print` key's
/// value as passed to the `template()` attribute.
fn build_template(ast: &syn::DeriveInput) -> Result<String, CompileError> {
let template_args = TemplateArgs::new(ast)?;
let config_toml = read_config_file(template_args.config_path.as_deref())?;
let config = Config::new(&config_toml, template_args.whitespace.as_ref())?;
let input = TemplateInput::new(ast, &config, template_args)?;
let source: String = match input.source {
Source::Source(ref s) => s.clone(),
Source::Path(_) => get_template_source(&input.path)?,
};
let mut templates = HashMap::new();
find_used_templates(&input, &mut templates, source)?;
let mut contexts = HashMap::new();
for (path, parsed) in &templates {
contexts.insert(
path.as_path(),
Context::new(input.config, path, parsed.nodes())?,
);
}
let ctx = &contexts[input.path.as_path()];
let heritage = if !ctx.blocks.is_empty() || ctx.extends.is_some() {
Some(Heritage::new(ctx, &contexts))
} else {
None
};
if input.print == Print::Ast || input.print == Print::All {
eprintln!("{:?}", templates[input.path.as_path()].nodes());
}
let code = Generator::new(
&input,
&contexts,
heritage.as_ref(),
MapChain::new(),
config.whitespace,
)
.build(&contexts[input.path.as_path()])?;
if input.print == Print::Code || input.print == Print::All {
eprintln!("{code}");
}
Ok(code)
}
#[derive(Default)]
pub(crate) struct TemplateArgs {
pub(crate) source: Option<Source>,
pub(crate) print: Print,
pub(crate) escaping: Option<String>,
pub(crate) ext: Option<String>,
pub(crate) syntax: Option<String>,
pub(crate) config_path: Option<String>,
pub(crate) whitespace: Option<String>,
}
impl TemplateArgs {
fn new(ast: &'_ syn::DeriveInput) -> Result<Self, CompileError> {
// Check that an attribute called `template()` exists once and that it is
// the proper type (list).
let mut template_args = None;
for attr in &ast.attrs {
if !attr.path().is_ident("template") {
continue;
}
match attr.parse_args_with(Punctuated::<syn::Meta, syn::Token![,]>::parse_terminated) {
Ok(args) if template_args.is_none() => template_args = Some(args),
Ok(_) => return Err("duplicated 'template' attribute".into()),
Err(e) => return Err(format!("unable to parse template arguments: {e}").into()),
};
}
let template_args =
template_args.ok_or_else(|| CompileError::from("no attribute 'template' found"))?;
let mut args = Self::default();
// Loop over the meta attributes and find everything that we
// understand. Return a CompileError if something is not right.
// `source` contains an enum that can represent `path` or `source`.
for item in template_args {
let pair = match item {
syn::Meta::NameValue(pair) => pair,
_ => {
return Err(format!(
"unsupported attribute argument {:?}",
item.to_token_stream()
)
.into())
}
};
let ident = match pair.path.get_ident() {
Some(ident) => ident,
None => unreachable!("not possible in syn::Meta::NameValue(…)"),
};
let value = match pair.value {
syn::Expr::Lit(lit) => lit,
syn::Expr::Group(group) => match *group.expr {
syn::Expr::Lit(lit) => lit,
_ => {
return Err(format!("unsupported argument value type for {ident:?}").into())
}
},
_ => return Err(format!("unsupported argument value type for {ident:?}").into()),
};
if ident == "path" {
if let syn::Lit::Str(s) = value.lit {
if args.source.is_some() {
return Err("must specify 'source' or 'path', not both".into());
}
args.source = Some(Source::Path(s.value()));
} else {
return Err("template path must be string literal".into());
}
} else if ident == "source" {
if let syn::Lit::Str(s) = value.lit {
if args.source.is_some() {
return Err("must specify 'source' or 'path', not both".into());
}
args.source = Some(Source::Source(s.value()));
} else {
return Err("template source must be string literal".into());
}
} else if ident == "print" {
if let syn::Lit::Str(s) = value.lit {
args.print = s.value().parse()?;
} else {
return Err("print value must be string literal".into());
}
} else if ident == "escape" {
if let syn::Lit::Str(s) = value.lit {
args.escaping = Some(s.value());
} else {
return Err("escape value must be string literal".into());
}
} else if ident == "ext" {
if let syn::Lit::Str(s) = value.lit {
args.ext = Some(s.value());
} else {
return Err("ext value must be string literal".into());
}
} else if ident == "syntax" {
if let syn::Lit::Str(s) = value.lit {
args.syntax = Some(s.value())
} else {
return Err("syntax value must be string literal".into());
}
} else if ident == "config" {
if let syn::Lit::Str(s) = value.lit {
args.config_path = Some(s.value())
} else {
return Err("config value must be string literal".into());
}
} else if ident == "whitespace" {
if let syn::Lit::Str(s) = value.lit {
args.whitespace = Some(s.value())
} else {
return Err("whitespace value must be string literal".into());
}
} else {
return Err(format!("unsupported attribute key {ident:?} found").into());
}
}
Ok(args)
}
}
fn find_used_templates(
input: &TemplateInput<'_>,
map: &mut HashMap<PathBuf, Parsed>,
source: String,
) -> Result<(), CompileError> {
let mut dependency_graph = Vec::new();
let mut check = vec![(input.path.clone(), source)];
while let Some((path, source)) = check.pop() {
let parsed = Parsed::new(source, input.syntax)?;
for n in parsed.nodes() {
match n {
Node::Extends(extends) => {
let extends = input.config.find_template(extends, Some(&path))?;
let dependency_path = (path.clone(), extends.clone());
if dependency_graph.contains(&dependency_path) {
return Err(format!(
"cyclic dependency in graph {:#?}",
dependency_graph
.iter()
.map(|e| format!("{:#?} --> {:#?}", e.0, e.1))
.collect::<Vec<String>>()
)
.into());
}
dependency_graph.push(dependency_path);
let source = get_template_source(&extends)?;
check.push((extends, source));
}
Node::Import(_, import, _) => {
let import = input.config.find_template(import, Some(&path))?;
let source = get_template_source(&import)?;
check.push((import, source));
}
_ => {}
}
}
map.insert(path, parsed);
}
Ok(())
}
struct Generator<'a> {
// The template input state: original struct AST and attributes
input: &'a TemplateInput<'a>,
// All contexts, keyed by the package-relative template path
contexts: &'a HashMap<&'a Path, Context<'a>>,
// The heritage contains references to blocks and their ancestry
heritage: Option<&'a Heritage<'a>>,
// Cache ASTs for included templates
includes: HashMap<PathBuf, Parsed>,
// Variables accessible directly from the current scope (not redirected to context)
locals: MapChain<'a, &'a str, LocalMeta>,
// Suffix whitespace from the previous literal. Will be flushed to the
// output buffer unless suppressed by whitespace suppression on the next
// non-literal.
next_ws: Option<&'a str>,
// Whitespace suppression from the previous non-literal. Will be used to
// determine whether to flush prefix whitespace from the next literal.
skip_ws: WhitespaceHandling,
// If currently in a block, this will contain the name of a potential parent block
super_block: Option<(&'a str, usize)>,
// buffer for writable
buf_writable: Vec<Writable<'a>>,
// Counter for write! hash named arguments
named: usize,
// If set to `suppress`, the whitespace characters will be removed by default unless `+` is
// used.
whitespace: WhitespaceHandling,
}
impl<'a> Generator<'a> {
fn new<'n>(
input: &'n TemplateInput<'_>,
contexts: &'n HashMap<&'n Path, Context<'n>>,
heritage: Option<&'n Heritage<'_>>,
locals: MapChain<'n, &'n str, LocalMeta>,
whitespace: WhitespaceHandling,
) -> Generator<'n> {
Generator {
input,
contexts,
heritage,
includes: HashMap::default(),
locals,
next_ws: None,
skip_ws: WhitespaceHandling::Preserve,
super_block: None,
buf_writable: vec![],
named: 0,
whitespace,
}
}
// Takes a Context and generates the relevant implementations.
fn build(mut self, ctx: &'a Context<'_>) -> Result<String, CompileError> {
let mut buf = Buffer::new(0);
self.impl_template(ctx, &mut buf)?;
self.impl_display(&mut buf)?;
#[cfg(feature = "with-actix-web")]
self.impl_actix_web_responder(&mut buf)?;
#[cfg(feature = "with-axum")]
self.impl_axum_into_response(&mut buf)?;
#[cfg(feature = "with-gotham")]
self.impl_gotham_into_response(&mut buf)?;
#[cfg(feature = "with-hyper")]
self.impl_hyper_into_response(&mut buf)?;
#[cfg(feature = "with-mendes")]
self.impl_mendes_responder(&mut buf)?;
#[cfg(feature = "with-rocket")]
self.impl_rocket_responder(&mut buf)?;
#[cfg(feature = "with-tide")]
self.impl_tide_integrations(&mut buf)?;
#[cfg(feature = "with-warp")]
self.impl_warp_reply(&mut buf)?;
Ok(buf.buf)
}
// Implement `Template` for the given context struct.
fn impl_template(
&mut self,
ctx: &'a Context<'_>,
buf: &mut Buffer,
) -> Result<(), CompileError> {
self.write_header(buf, "::askama::Template", None)?;
buf.writeln(
"fn render_into(&self, writer: &mut (impl ::std::fmt::Write + ?Sized)) -> \
::askama::Result<()> {",
)?;
// Make sure the compiler understands that the generated code depends on the template files.
for path in self.contexts.keys() {
// Skip the fake path of templates defined in rust source.
let path_is_valid = match self.input.source {
Source::Path(_) => true,
Source::Source(_) => path != &self.input.path,
};
if path_is_valid {
let path = path.to_str().unwrap();
buf.writeln(
"e! {
include_bytes!(#path);
}
.to_string(),
)?;
}
}
let size_hint = if let Some(heritage) = self.heritage {
self.handle(heritage.root, heritage.root.nodes, buf, AstLevel::Top)
} else {
self.handle(ctx, ctx.nodes, buf, AstLevel::Top)
}?;
self.flush_ws(Ws(None, None));
buf.writeln("::askama::Result::Ok(())")?;
buf.writeln("}")?;
buf.writeln("const EXTENSION: ::std::option::Option<&'static ::std::primitive::str> = ")?;
buf.writeln(&format!("{:?}", self.input.extension()))?;
buf.writeln(";")?;
buf.writeln("const SIZE_HINT: ::std::primitive::usize = ")?;
buf.writeln(&format!("{size_hint}"))?;
buf.writeln(";")?;
buf.writeln("const MIME_TYPE: &'static ::std::primitive::str = ")?;
buf.writeln(&format!("{:?}", &self.input.mime_type))?;
buf.writeln(";")?;
buf.writeln("}")?;
Ok(())
}
// Implement `Display` for the given context struct.
fn impl_display(&mut self, buf: &mut Buffer) -> Result<(), CompileError> {
self.write_header(buf, "::std::fmt::Display", None)?;
buf.writeln("#[inline]")?;
buf.writeln("fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {")?;
buf.writeln("::askama::Template::render_into(self, f).map_err(|_| ::std::fmt::Error {})")?;
buf.writeln("}")?;
buf.writeln("}")
}
// Implement Actix-web's `Responder`.
#[cfg(feature = "with-actix-web")]
fn impl_actix_web_responder(&mut self, buf: &mut Buffer) -> Result<(), CompileError> {
self.write_header(buf, "::askama_actix::actix_web::Responder", None)?;
buf.writeln("type Body = ::askama_actix::actix_web::body::BoxBody;")?;
buf.writeln("#[inline]")?;
buf.writeln(
"fn respond_to(self, _req: &::askama_actix::actix_web::HttpRequest) \
-> ::askama_actix::actix_web::HttpResponse<Self::Body> {",
)?;
buf.writeln("<Self as ::askama_actix::TemplateToResponse>::to_response(&self)")?;
buf.writeln("}")?;
buf.writeln("}")
}
// Implement Axum's `IntoResponse`.
#[cfg(feature = "with-axum")]
fn impl_axum_into_response(&mut self, buf: &mut Buffer) -> Result<(), CompileError> {
self.write_header(buf, "::askama_axum::IntoResponse", None)?;
buf.writeln("#[inline]")?;
buf.writeln(
"fn into_response(self)\
-> ::askama_axum::Response {",
)?;
buf.writeln("::askama_axum::into_response(&self)")?;
buf.writeln("}")?;
buf.writeln("}")
}
// Implement gotham's `IntoResponse`.
#[cfg(feature = "with-gotham")]
fn impl_gotham_into_response(&mut self, buf: &mut Buffer) -> Result<(), CompileError> {
self.write_header(buf, "::askama_gotham::IntoResponse", None)?;
buf.writeln("#[inline]")?;
buf.writeln(
"fn into_response(self, _state: &::askama_gotham::State)\
-> ::askama_gotham::Response<::askama_gotham::Body> {",
)?;
buf.writeln("::askama_gotham::respond(&self)")?;
buf.writeln("}")?;
buf.writeln("}")
}
// Implement `From<Template> for hyper::Response<Body>` and `From<Template> for hyper::Body.
#[cfg(feature = "with-hyper")]
fn impl_hyper_into_response(&mut self, buf: &mut Buffer) -> Result<(), CompileError> {
let (impl_generics, orig_ty_generics, where_clause) =
self.input.ast.generics.split_for_impl();
let ident = &self.input.ast.ident;
// From<Template> for hyper::Response<Body>
buf.writeln(&format!(
"{} {{",
quote!(
impl #impl_generics ::core::convert::From<&#ident #orig_ty_generics>
for ::askama_hyper::hyper::Response<::askama_hyper::hyper::Body>
#where_clause
)
))?;
buf.writeln("#[inline]")?;
buf.writeln(&format!(
"{} {{",
quote!(fn from(value: &#ident #orig_ty_generics) -> Self)
))?;
buf.writeln("::askama_hyper::respond(value)")?;
buf.writeln("}")?;
buf.writeln("}")?;
// TryFrom<Template> for hyper::Body
buf.writeln(&format!(
"{} {{",
quote!(
impl #impl_generics ::core::convert::TryFrom<&#ident #orig_ty_generics>
for ::askama_hyper::hyper::Body
#where_clause
)
))?;
buf.writeln("type Error = ::askama::Error;")?;
buf.writeln("#[inline]")?;
buf.writeln(&format!(
"{} {{",
quote!(fn try_from(value: &#ident #orig_ty_generics) -> Result<Self, Self::Error>)
))?;
buf.writeln("::askama::Template::render(value).map(Into::into)")?;
buf.writeln("}")?;
buf.writeln("}")
}
// Implement mendes' `Responder`.
#[cfg(feature = "with-mendes")]
fn impl_mendes_responder(&mut self, buf: &mut Buffer) -> Result<(), CompileError> {
let param = syn::parse_str("A: ::mendes::Application").unwrap();
let mut generics = self.input.ast.generics.clone();
generics.params.push(param);
let (_, orig_ty_generics, _) = self.input.ast.generics.split_for_impl();
let (impl_generics, _, where_clause) = generics.split_for_impl();
let mut where_clause = match where_clause {
Some(clause) => clause.clone(),
None => syn::WhereClause {
where_token: syn::Token![where](proc_macro2::Span::call_site()),
predicates: syn::punctuated::Punctuated::new(),
},
};
where_clause
.predicates
.push(syn::parse_str("A::ResponseBody: From<String>").unwrap());
where_clause
.predicates
.push(syn::parse_str("A::Error: From<::askama_mendes::Error>").unwrap());
buf.writeln(
format!(
"{} {} for {} {} {{",
quote!(impl #impl_generics),
"::mendes::application::IntoResponse<A>",
self.input.ast.ident,
quote!(#orig_ty_generics #where_clause),
)
.as_ref(),
)?;
buf.writeln(
"fn into_response(self, app: &A, req: &::mendes::http::request::Parts) \
-> ::mendes::http::Response<A::ResponseBody> {",
)?;
buf.writeln("::askama_mendes::into_response(app, req, &self)")?;
buf.writeln("}")?;
buf.writeln("}")?;
Ok(())
}
// Implement Rocket's `Responder`.
#[cfg(feature = "with-rocket")]
fn impl_rocket_responder(&mut self, buf: &mut Buffer) -> Result<(), CompileError> {
let lifetime1 = syn::Lifetime::new("'askama1", proc_macro2::Span::call_site());
let lifetime2 = syn::Lifetime::new("'askama2", proc_macro2::Span::call_site());
let mut param2 = syn::LifetimeParam::new(lifetime2);
param2.colon_token = Some(syn::Token![:](proc_macro2::Span::call_site()));
param2.bounds = syn::punctuated::Punctuated::new();
param2.bounds.push_value(lifetime1.clone());
let param1 = syn::GenericParam::Lifetime(syn::LifetimeParam::new(lifetime1));
let param2 = syn::GenericParam::Lifetime(param2);
self.write_header(
buf,
"::askama_rocket::Responder<'askama1, 'askama2>",
Some(vec![param1, param2]),
)?;
buf.writeln("#[inline]")?;
buf.writeln(
"fn respond_to(self, _: &'askama1 ::askama_rocket::Request) \
-> ::askama_rocket::Result<'askama2> {",
)?;
buf.writeln("::askama_rocket::respond(&self)")?;
buf.writeln("}")?;
buf.writeln("}")?;
Ok(())
}
#[cfg(feature = "with-tide")]
fn impl_tide_integrations(&mut self, buf: &mut Buffer) -> Result<(), CompileError> {
self.write_header(
buf,
"::std::convert::TryInto<::askama_tide::tide::Body>",
None,
)?;
buf.writeln(
"type Error = ::askama_tide::askama::Error;\n\
#[inline]\n\
fn try_into(self) -> ::askama_tide::askama::Result<::askama_tide::tide::Body> {",
)?;
buf.writeln("::askama_tide::try_into_body(&self)")?;
buf.writeln("}")?;
buf.writeln("}")?;
buf.writeln("#[allow(clippy::from_over_into)]")?;
self.write_header(buf, "Into<::askama_tide::tide::Response>", None)?;
buf.writeln("#[inline]")?;
buf.writeln("fn into(self) -> ::askama_tide::tide::Response {")?;
buf.writeln("::askama_tide::into_response(&self)")?;
buf.writeln("}\n}")
}
#[cfg(feature = "with-warp")]
fn impl_warp_reply(&mut self, buf: &mut Buffer) -> Result<(), CompileError> {
self.write_header(buf, "::askama_warp::warp::reply::Reply", None)?;
buf.writeln("#[inline]")?;
buf.writeln("fn into_response(self) -> ::askama_warp::warp::reply::Response {")?;
buf.writeln("::askama_warp::reply(&self)")?;
buf.writeln("}")?;
buf.writeln("}")
}
// Writes header for the `impl` for `TraitFromPathName` or `Template`
// for the given context struct.
fn write_header(
&mut self,
buf: &mut Buffer,
target: &str,
params: Option<Vec<syn::GenericParam>>,
) -> Result<(), CompileError> {
let mut generics = self.input.ast.generics.clone();
if let Some(params) = params {
for param in params {
generics.params.push(param);
}
}
let (_, orig_ty_generics, _) = self.input.ast.generics.split_for_impl();
let (impl_generics, _, where_clause) = generics.split_for_impl();
buf.writeln(
format!(
"{} {} for {}{} {{",
quote!(impl #impl_generics),
target,
self.input.ast.ident,
quote!(#orig_ty_generics #where_clause),
)
.as_ref(),
)
}
/* Helper methods for handling node types */
fn handle(
&mut self,
ctx: &'a Context<'_>,
nodes: &'a [Node<'_>],
buf: &mut Buffer,
level: AstLevel,
) -> Result<usize, CompileError> {
let mut size_hint = 0;
for n in nodes {
match *n {
Node::Lit(lws, val, rws) => {
self.visit_lit(lws, val, rws);
}
Node::Comment(ws) => {
self.write_comment(ws);
}
Node::Expr(ws, ref val) => {
self.write_expr(ws, val);
}
Node::LetDecl(ws, ref var) => {
self.write_let_decl(buf, ws, var)?;
}
Node::Let(ws, ref var, ref val) => {
self.write_let(buf, ws, var, val)?;
}
Node::Cond(ref conds, ws) => {
size_hint += self.write_cond(ctx, buf, conds, ws)?;
}
Node::Match(ws1, ref expr, ref arms, ws2) => {
size_hint += self.write_match(ctx, buf, ws1, expr, arms, ws2)?;
}
Node::Loop(ref loop_block) => {
size_hint += self.write_loop(ctx, buf, loop_block)?;
}
Node::BlockDef(ws1, name, _, ws2) => {
size_hint += self.write_block(buf, Some(name), Ws(ws1.0, ws2.1))?;
}
Node::Include(ws, path) => {
size_hint += self.handle_include(ctx, buf, ws, path)?;
}
Node::Call(ws, scope, name, ref args) => {
size_hint += self.write_call(ctx, buf, ws, scope, name, args)?;
}
Node::Macro(_, ref m) => {
if level != AstLevel::Top {
return Err("macro blocks only allowed at the top level".into());
}
self.flush_ws(m.ws1);
self.prepare_ws(m.ws2);
}
Node::Raw(ws1, lws, val, rws, ws2) => {
self.handle_ws(ws1);
self.visit_lit(lws, val, rws);
self.handle_ws(ws2);
}
Node::Import(ws, _, _) => {
if level != AstLevel::Top {
return Err("import blocks only allowed at the top level".into());
}
self.handle_ws(ws);
}
Node::Extends(_) => {
if level != AstLevel::Top {
return Err("extend blocks only allowed at the top level".into());
}
// No whitespace handling: child template top-level is not used,
// except for the blocks defined in it.
}
Node::Break(ws) => {
self.handle_ws(ws);
self.write_buf_writable(buf)?;
buf.writeln("break;")?;
}
Node::Continue(ws) => {
self.handle_ws(ws);
self.write_buf_writable(buf)?;
buf.writeln("continue;")?;
}
}
}
if AstLevel::Top == level {
// Handle any pending whitespace.
if self.next_ws.is_some() {
self.flush_ws(Ws(Some(self.skip_ws.into()), None));
}
size_hint += self.write_buf_writable(buf)?;
}
Ok(size_hint)
}
fn write_cond(
&mut self,
ctx: &'a Context<'_>,
buf: &mut Buffer,
conds: &'a [Cond<'_>],
ws: Ws,
) -> Result<usize, CompileError> {
let mut flushed = 0;
let mut arm_sizes = Vec::new();
let mut has_else = false;
for (i, cond) in conds.iter().enumerate() {
self.handle_ws(cond.ws);
flushed += self.write_buf_writable(buf)?;
if i > 0 {
self.locals.pop();
}
self.locals.push();
let mut arm_size = 0;
if let Some(CondTest { target, expr }) = &cond.cond {
if i == 0 {
buf.write("if ");
} else {
buf.dedent()?;
buf.write("} else if ");
}
if let Some(target) = target {
let mut expr_buf = Buffer::new(0);
self.visit_expr(&mut expr_buf, expr)?;
buf.write("let ");
self.visit_target(buf, true, true, target);
buf.write(" = &(");
buf.write(&expr_buf.buf);
buf.write(")");
} else {
// The following syntax `*(&(...) as &bool)` is used to
// trigger Rust's automatic dereferencing, to coerce
// e.g. `&&&&&bool` to `bool`. First `&(...) as &bool`
// coerces e.g. `&&&bool` to `&bool`. Then `*(&bool)`
// finally dereferences it to `bool`.
buf.write("*(&(");
let expr_code = self.visit_expr_root(expr)?;
buf.write(&expr_code);
buf.write(") as &bool)");
}
} else {
buf.dedent()?;
buf.write("} else");
has_else = true;
}
buf.writeln(" {")?;
arm_size += self.handle(ctx, &cond.block, buf, AstLevel::Nested)?;
arm_sizes.push(arm_size);
}
self.handle_ws(ws);
flushed += self.write_buf_writable(buf)?;
buf.writeln("}")?;
self.locals.pop();
if !has_else {
arm_sizes.push(0);
}
Ok(flushed + median(&mut arm_sizes))
}
#[allow(clippy::too_many_arguments)]
fn write_match(
&mut self,
ctx: &'a Context<'_>,
buf: &mut Buffer,
ws1: Ws,
expr: &Expr<'_>,
arms: &'a [When<'_>],
ws2: Ws,
) -> Result<usize, CompileError> {
self.flush_ws(ws1);
let flushed = self.write_buf_writable(buf)?;
let mut arm_sizes = Vec::new();
let expr_code = self.visit_expr_root(expr)?;
buf.writeln(&format!("match &{expr_code} {{"))?;
let mut arm_size = 0;
for (i, arm) in arms.iter().enumerate() {
self.handle_ws(arm.ws);
if i > 0 {
arm_sizes.push(arm_size + self.write_buf_writable(buf)?);
buf.writeln("}")?;
self.locals.pop();
}
self.locals.push();
self.visit_target(buf, true, true, &arm.target);
buf.writeln(" => {")?;
arm_size = self.handle(ctx, &arm.block, buf, AstLevel::Nested)?;
}
self.handle_ws(ws2);
arm_sizes.push(arm_size + self.write_buf_writable(buf)?);
buf.writeln("}")?;
self.locals.pop();
buf.writeln("}")?;
Ok(flushed + median(&mut arm_sizes))
}
#[allow(clippy::too_many_arguments)]
fn write_loop(
&mut self,
ctx: &'a Context<'_>,
buf: &mut Buffer,
loop_block: &'a Loop<'_>,
) -> Result<usize, CompileError> {
self.handle_ws(loop_block.ws1);
self.locals.push();
let expr_code = self.visit_expr_root(&loop_block.iter)?;
let flushed = self.write_buf_writable(buf)?;
buf.writeln("{")?;
buf.writeln("let mut _did_loop = false;")?;
match loop_block.iter {
Expr::Range(_, _, _) => buf.writeln(&format!("let _iter = {expr_code};")),
Expr::Array(..) => buf.writeln(&format!("let _iter = {expr_code}.iter();")),
// If `iter` is a call then we assume it's something that returns
// an iterator. If not then the user can explicitly add the needed
// call without issues.
Expr::Call(..) | Expr::Index(..) => {
buf.writeln(&format!("let _iter = ({expr_code}).into_iter();"))
}
// If accessing `self` then it most likely needs to be
// borrowed, to prevent an attempt of moving.
_ if expr_code.starts_with("self.") => {
buf.writeln(&format!("let _iter = (&{expr_code}).into_iter();"))
}
// If accessing a field then it most likely needs to be
// borrowed, to prevent an attempt of moving.
Expr::Attr(..) => buf.writeln(&format!("let _iter = (&{expr_code}).into_iter();")),
// Otherwise, we borrow `iter` assuming that it implements `IntoIterator`.
_ => buf.writeln(&format!("let _iter = ({expr_code}).into_iter();")),
}?;
if let Some(cond) = &loop_block.cond {
self.locals.push();
buf.write("let _iter = _iter.filter(|");
self.visit_target(buf, true, true, &loop_block.var);
buf.write("| -> bool {");
self.visit_expr(buf, cond)?;
buf.writeln("});")?;
self.locals.pop();
}
self.locals.push();
buf.write("for (");
self.visit_target(buf, true, true, &loop_block.var);
buf.writeln(", _loop_item) in ::askama::helpers::TemplateLoop::new(_iter) {")?;
buf.writeln("_did_loop = true;")?;
let mut size_hint1 = self.handle(ctx, &loop_block.body, buf, AstLevel::Nested)?;
self.handle_ws(loop_block.ws2);
size_hint1 += self.write_buf_writable(buf)?;
self.locals.pop();
buf.writeln("}")?;
buf.writeln("if !_did_loop {")?;
self.locals.push();
let mut size_hint2 = self.handle(ctx, &loop_block.else_block, buf, AstLevel::Nested)?;
self.handle_ws(loop_block.ws3);
size_hint2 += self.write_buf_writable(buf)?;
self.locals.pop();
buf.writeln("}")?;
buf.writeln("}")?;
Ok(flushed + ((size_hint1 * 3) + size_hint2) / 2)
}
fn write_call(
&mut self,
ctx: &'a Context<'_>,
buf: &mut Buffer,
ws: Ws,
scope: Option<&str>,
name: &str,
args: &[Expr<'_>],
) -> Result<usize, CompileError> {
if name == "super" {
return self.write_block(buf, None, ws);
}
let (def, own_ctx) = match scope {
Some(s) => {
let path = ctx.imports.get(s).ok_or_else(|| {
CompileError::from(format!("no import found for scope {s:?}"))
})?;
let mctx = self
.contexts
.get(path.as_path())
.ok_or_else(|| CompileError::from(format!("context for {path:?} not found")))?;
let def = mctx.macros.get(name).ok_or_else(|| {
CompileError::from(format!("macro {name:?} not found in scope {s:?}"))
})?;
(def, mctx)
}
None => {
let def = ctx
.macros
.get(name)
.ok_or_else(|| CompileError::from(format!("macro {name:?} not found")))?;
(def, ctx)
}
};
self.flush_ws(ws); // Cannot handle_ws() here: whitespace from macro definition comes first
self.locals.push();
self.write_buf_writable(buf)?;
buf.writeln("{")?;
self.prepare_ws(def.ws1);
let mut names = Buffer::new(0);
let mut values = Buffer::new(0);
let mut is_first_variable = true;
for (i, arg) in def.args.iter().enumerate() {
let expr = args.get(i).ok_or_else(|| {
CompileError::from(format!("macro {name:?} takes more than {i} arguments"))
})?;
match expr {
// If `expr` is already a form of variable then
// don't reintroduce a new variable. This is
// to avoid moving non-copyable values.
Expr::Var(name) => {
let var = self.locals.resolve_or_self(name);
self.locals.insert(arg, LocalMeta::with_ref(var));
}
Expr::Attr(obj, attr) => {
let mut attr_buf = Buffer::new(0);
self.visit_attr(&mut attr_buf, obj, attr)?;
let var = self.locals.resolve(&attr_buf.buf).unwrap_or(attr_buf.buf);
self.locals.insert(arg, LocalMeta::with_ref(var));
}
// Everything else still needs to become variables,
// to avoid having the same logic be executed
// multiple times, e.g. in the case of macro
// parameters being used multiple times.
_ => {
if is_first_variable {
is_first_variable = false
} else {
names.write(", ");
values.write(", ");
}
names.write(arg);
values.write("(");
values.write(&self.visit_expr_root(expr)?);
values.write(")");
self.locals.insert_with_default(arg);
}
}
}
debug_assert_eq!(names.buf.is_empty(), values.buf.is_empty());
if !names.buf.is_empty() {
buf.writeln(&format!("let ({}) = ({});", names.buf, values.buf))?;
}
let mut size_hint = self.handle(own_ctx, &def.nodes, buf, AstLevel::Nested)?;
self.flush_ws(def.ws2);
size_hint += self.write_buf_writable(buf)?;
buf.writeln("}")?;
self.locals.pop();
self.prepare_ws(ws);
Ok(size_hint)
}
fn handle_include(
&mut self,
ctx: &'a Context<'_>,
buf: &mut Buffer,
ws: Ws,
path: &str,
) -> Result<usize, CompileError> {
self.flush_ws(ws);
self.write_buf_writable(buf)?;
let path = self
.input
.config
.find_template(path, Some(&self.input.path))?;
// Make sure the compiler understands that the generated code depends on the template file.
{
let path = path.to_str().unwrap();
buf.writeln(
"e! {
include_bytes!(#path);
}
.to_string(),
)?;
}
// Since nodes must not outlive the Generator, we instantiate a nested `Generator` here to
// handle the include's nodes. Unfortunately we can't easily share the `includes` cache.
let locals = MapChain::with_parent(&self.locals);
let mut child = Self::new(
self.input,
self.contexts,
self.heritage,
locals,
self.whitespace,
);
let nodes = match self.contexts.get(path.as_path()) {
Some(ctx) => ctx.nodes,
None => match self.includes.entry(path) {
Entry::Occupied(entry) => entry.into_mut().nodes(),
Entry::Vacant(entry) => {
let src = get_template_source(entry.key())?;
entry.insert(Parsed::new(src, self.input.syntax)?).nodes()
}
},
};
let mut size_hint = child.handle(ctx, nodes, buf, AstLevel::Nested)?;
size_hint += child.write_buf_writable(buf)?;
self.prepare_ws(ws);
Ok(size_hint)
}
fn write_let_decl(
&mut self,
buf: &mut Buffer,
ws: Ws,
var: &'a Target<'_>,
) -> Result<(), CompileError> {
self.handle_ws(ws);
self.write_buf_writable(buf)?;
buf.write("let ");
self.visit_target(buf, false, true, var);
buf.writeln(";")
}
fn is_shadowing_variable(&self, var: &Target<'a>) -> Result<bool, CompileError> {
match var {
Target::Name(name) => {
let name = normalize_identifier(name);
match self.locals.get(&name) {
// declares a new variable
None => Ok(false),
// an initialized variable gets shadowed
Some(meta) if meta.initialized => Ok(true),
// initializes a variable that was introduced in a LetDecl before
_ => Ok(false),
}
}
Target::Tuple(_, targets) => {
for target in targets {
match self.is_shadowing_variable(target) {
Ok(false) => continue,
outcome => return outcome,
}
}
Ok(false)
}
Target::Struct(_, named_targets) => {
for (_, target) in named_targets {
match self.is_shadowing_variable(target) {
Ok(false) => continue,
outcome => return outcome,
}
}
Ok(false)
}
_ => Err("literals are not allowed on the left-hand side of an assignment".into()),
}
}
fn write_let(
&mut self,
buf: &mut Buffer,
ws: Ws,
var: &'a Target<'_>,
val: &Expr<'_>,
) -> Result<(), CompileError> {
self.handle_ws(ws);
let mut expr_buf = Buffer::new(0);
self.visit_expr(&mut expr_buf, val)?;
let shadowed = self.is_shadowing_variable(var)?;
if shadowed {
// Need to flush the buffer if the variable is being shadowed,
// to ensure the old variable is used.
self.write_buf_writable(buf)?;
}
if shadowed
|| !matches!(var, &Target::Name(_))
|| matches!(var, Target::Name(name) if self.locals.get(name).is_none())
{
buf.write("let ");
}
self.visit_target(buf, true, true, var);
buf.writeln(&format!(" = {};", &expr_buf.buf))
}
// If `name` is `Some`, this is a call to a block definition, and we have to find
// the first block for that name from the ancestry chain. If name is `None`, this
// is from a `super()` call, and we can get the name from `self.super_block`.
fn write_block(
&mut self,
buf: &mut Buffer,
name: Option<&'a str>,
outer: Ws,
) -> Result<usize, CompileError> {
// Flush preceding whitespace according to the outer WS spec
self.flush_ws(outer);
let prev_block = self.super_block;
let cur = match (name, prev_block) {
// The top-level context contains a block definition
(Some(cur_name), None) => (cur_name, 0),
// A block definition contains a block definition of the same name
(Some(cur_name), Some((prev_name, _))) if cur_name == prev_name => {
return Err(format!("cannot define recursive blocks ({cur_name})").into());
}
// A block definition contains a definition of another block
(Some(cur_name), Some((_, _))) => (cur_name, 0),
// `super()` was called inside a block
(None, Some((prev_name, gen))) => (prev_name, gen + 1),
// `super()` is called from outside a block
(None, None) => return Err("cannot call 'super()' outside block".into()),
};
self.super_block = Some(cur);
// Get the block definition from the heritage chain
let heritage = self
.heritage
.as_ref()
.ok_or_else(|| CompileError::from("no block ancestors available"))?;
let (ctx, def) = heritage.blocks[cur.0].get(cur.1).ok_or_else(|| {
CompileError::from(match name {
None => format!("no super() block found for block '{}'", cur.0),
Some(name) => format!("no block found for name '{name}'"),
})
})?;
// Get the nodes and whitespace suppression data from the block definition
let (ws1, nodes, ws2) = if let Node::BlockDef(ws1, _, nodes, ws2) = def {
(ws1, nodes, ws2)
} else {
unreachable!()
};
// Handle inner whitespace suppression spec and process block nodes
self.prepare_ws(*ws1);
self.locals.push();
let size_hint = self.handle(ctx, nodes, buf, AstLevel::Block)?;
if !self.locals.is_current_empty() {
// Need to flush the buffer before popping the variable stack
self.write_buf_writable(buf)?;
}
self.locals.pop();
self.flush_ws(*ws2);
// Restore original block context and set whitespace suppression for
// succeeding whitespace according to the outer WS spec
self.super_block = prev_block;
self.prepare_ws(outer);
Ok(size_hint)
}
fn write_expr(&mut self, ws: Ws, s: &'a Expr<'a>) {
self.handle_ws(ws);
self.buf_writable.push(Writable::Expr(s));
}
// Write expression buffer and empty
fn write_buf_writable(&mut self, buf: &mut Buffer) -> Result<usize, CompileError> {
if self.buf_writable.is_empty() {
return Ok(0);
}
if self
.buf_writable
.iter()
.all(|w| matches!(w, Writable::Lit(_)))
{
let mut buf_lit = Buffer::new(0);
for s in mem::take(&mut self.buf_writable) {
if let Writable::Lit(s) = s {
buf_lit.write(s);
};
}
buf.writeln(&format!("writer.write_str({:#?})?;", &buf_lit.buf))?;
return Ok(buf_lit.buf.len());
}
let mut size_hint = 0;
let mut buf_format = Buffer::new(0);
let mut buf_expr = Buffer::new(buf.indent + 1);
let mut expr_cache = HashMap::with_capacity(self.buf_writable.len());
for s in mem::take(&mut self.buf_writable) {
match s {
Writable::Lit(s) => {
buf_format.write(&s.replace('{', "{{").replace('}', "}}"));
size_hint += s.len();
}
Writable::Expr(s) => {
use self::DisplayWrap::*;
let mut expr_buf = Buffer::new(0);
let wrapped = self.visit_expr(&mut expr_buf, s)?;
let expression = match wrapped {
Wrapped => expr_buf.buf,
Unwrapped => format!(
"::askama::MarkupDisplay::new_unsafe(&({}), {})",
expr_buf.buf, self.input.escaper
),
};
let id = match expr_cache.entry(expression.clone()) {
Entry::Occupied(e) if is_cacheable(s) => *e.get(),
e => {
let id = self.named;
self.named += 1;
buf_expr.write(&format!("expr{id} = "));
buf_expr.write("&");
buf_expr.write(&expression);
buf_expr.writeln(",")?;
if let Entry::Vacant(e) = e {
e.insert(id);
}
id
}
};
buf_format.write(&format!("{{expr{id}}}"));
size_hint += 3;
}
}
}
buf.writeln("::std::write!(")?;
buf.indent();
buf.writeln("writer,")?;
buf.writeln(&format!("{:#?},", &buf_format.buf))?;
buf.writeln(buf_expr.buf.trim())?;
buf.dedent()?;
buf.writeln(")?;")?;
Ok(size_hint)
}
fn visit_lit(&mut self, lws: &'a str, val: &'a str, rws: &'a str) {
assert!(self.next_ws.is_none());
if !lws.is_empty() {
match self.skip_ws {
WhitespaceHandling::Suppress => {}
_ if val.is_empty() => {
assert!(rws.is_empty());
self.next_ws = Some(lws);
}
WhitespaceHandling::Preserve => self.buf_writable.push(Writable::Lit(lws)),
WhitespaceHandling::Minimize => {
self.buf_writable
.push(Writable::Lit(match lws.contains('\n') {
true => "\n",
false => " ",
}));
}
}
}
if !val.is_empty() {
self.skip_ws = WhitespaceHandling::Preserve;
self.buf_writable.push(Writable::Lit(val));
}
if !rws.is_empty() {
self.next_ws = Some(rws);
}
}
fn write_comment(&mut self, ws: Ws) {
self.handle_ws(ws);
}
/* Visitor methods for expression types */
fn visit_expr_root(&mut self, expr: &Expr<'_>) -> Result<String, CompileError> {
let mut buf = Buffer::new(0);
self.visit_expr(&mut buf, expr)?;
Ok(buf.buf)
}
fn visit_expr(
&mut self,
buf: &mut Buffer,
expr: &Expr<'_>,
) -> Result<DisplayWrap, CompileError> {
Ok(match *expr {
Expr::BoolLit(s) => self.visit_bool_lit(buf, s),
Expr::NumLit(s) => self.visit_num_lit(buf, s),
Expr::StrLit(s) => self.visit_str_lit(buf, s),
Expr::CharLit(s) => self.visit_char_lit(buf, s),
Expr::Var(s) => self.visit_var(buf, s),
Expr::Path(ref path) => self.visit_path(buf, path),
Expr::Array(ref elements) => self.visit_array(buf, elements)?,
Expr::Attr(ref obj, name) => self.visit_attr(buf, obj, name)?,
Expr::Index(ref obj, ref key) => self.visit_index(buf, obj, key)?,
Expr::Filter(name, ref args) => self.visit_filter(buf, name, args)?,
Expr::Unary(op, ref inner) => self.visit_unary(buf, op, inner)?,
Expr::BinOp(op, ref left, ref right) => self.visit_binop(buf, op, left, right)?,
Expr::Range(op, ref left, ref right) => {
self.visit_range(buf, op, left.as_deref(), right.as_deref())?
}
Expr::Group(ref inner) => self.visit_group(buf, inner)?,
Expr::Call(ref obj, ref args) => self.visit_call(buf, obj, args)?,
Expr::RustMacro(ref path, args) => self.visit_rust_macro(buf, path, args),
Expr::Try(ref expr) => self.visit_try(buf, expr.as_ref())?,
Expr::Tuple(ref exprs) => self.visit_tuple(buf, exprs)?,
})
}
fn visit_try(
&mut self,
buf: &mut Buffer,
expr: &Expr<'_>,
) -> Result<DisplayWrap, CompileError> {
buf.write("::core::result::Result::map_err(");
self.visit_expr(buf, expr)?;
buf.write(", |err| ::askama::shared::Error::Custom(::core::convert::Into::into(err)))?");
Ok(DisplayWrap::Unwrapped)
}
fn visit_rust_macro(&mut self, buf: &mut Buffer, path: &[&str], args: &str) -> DisplayWrap {
self.visit_path(buf, path);
buf.write("!(");
buf.write(args);
buf.write(")");
DisplayWrap::Unwrapped
}
#[cfg(not(feature = "markdown"))]
fn _visit_markdown_filter(
&mut self,
_buf: &mut Buffer,
_args: &[Expr<'_>],
) -> Result<DisplayWrap, CompileError> {
Err("the `markdown` filter requires the `markdown` feature to be enabled".into())
}
#[cfg(feature = "markdown")]
fn _visit_markdown_filter(
&mut self,
buf: &mut Buffer,
args: &[Expr<'_>],
) -> Result<DisplayWrap, CompileError> {
let (md, options) = match args {
[md] => (md, None),
[md, options] => (md, Some(options)),
_ => return Err("markdown filter expects no more than one option argument".into()),
};
buf.write(&format!(
"::askama::filters::markdown({}, ",
self.input.escaper
));
self.visit_expr(buf, md)?;
match options {
Some(options) => {
buf.write(", ::core::option::Option::Some(");
self.visit_expr(buf, options)?;
buf.write(")");
}
None => buf.write(", ::core::option::Option::None"),
}
buf.write(")?");
Ok(DisplayWrap::Wrapped)
}
fn visit_filter(
&mut self,
buf: &mut Buffer,
mut name: &str,
args: &[Expr<'_>],
) -> Result<DisplayWrap, CompileError> {
if matches!(name, "escape" | "e") {
self._visit_escape_filter(buf, args)?;
return Ok(DisplayWrap::Wrapped);
} else if name == "format" {
self._visit_format_filter(buf, args)?;
return Ok(DisplayWrap::Unwrapped);
} else if name == "fmt" {
self._visit_fmt_filter(buf, args)?;
return Ok(DisplayWrap::Unwrapped);
} else if name == "join" {
self._visit_join_filter(buf, args)?;
return Ok(DisplayWrap::Unwrapped);
} else if name == "markdown" {
return self._visit_markdown_filter(buf, args);
}
if name == "tojson" {
name = "json";
}
#[cfg(not(feature = "serde-json"))]
if name == "json" {
return Err("the `json` filter requires the `serde-json` feature to be enabled".into());
}
#[cfg(not(feature = "serde-yaml"))]
if name == "yaml" {
return Err("the `yaml` filter requires the `serde-yaml` feature to be enabled".into());
}
const FILTERS: [&str; 2] = ["safe", "yaml"];
if FILTERS.contains(&name) {
buf.write(&format!(
"::askama::filters::{}({}, ",
name, self.input.escaper
));
} else if crate::BUILT_IN_FILTERS.contains(&name) {
buf.write(&format!("::askama::filters::{name}("));
} else {
buf.write(&format!("filters::{name}("));
}
self._visit_args(buf, args)?;
buf.write(")?");
Ok(match FILTERS.contains(&name) {
true => DisplayWrap::Wrapped,
false => DisplayWrap::Unwrapped,
})
}
fn _visit_escape_filter(
&mut self,
buf: &mut Buffer,
args: &[Expr<'_>],
) -> Result<(), CompileError> {
if args.len() > 2 {
return Err("only two arguments allowed to escape filter".into());
}
let opt_escaper = match args.get(1) {
Some(Expr::StrLit(name)) => Some(*name),
Some(_) => return Err("invalid escaper type for escape filter".into()),
None => None,
};
let escaper = match opt_escaper {
Some(name) => self
.input
.config
.escapers
.iter()
.find_map(|(escapers, escaper)| escapers.contains(name).then_some(escaper))
.ok_or_else(|| CompileError::from("invalid escaper for escape filter"))?,
None => self.input.escaper,
};
buf.write("::askama::filters::escape(");
buf.write(escaper);
buf.write(", ");
self._visit_args(buf, &args[..1])?;
buf.write(")?");
Ok(())
}
fn _visit_format_filter(
&mut self,
buf: &mut Buffer,
args: &[Expr<'_>],
) -> Result<(), CompileError> {
buf.write("format!(");
if let Some(Expr::StrLit(v)) = args.first() {
self.visit_str_lit(buf, v);
if args.len() > 1 {
buf.write(", ");
}
} else {
return Err("invalid expression type for format filter".into());
}
self._visit_args(buf, &args[1..])?;
buf.write(")");
Ok(())
}
fn _visit_fmt_filter(
&mut self,
buf: &mut Buffer,
args: &[Expr<'_>],
) -> Result<(), CompileError> {
buf.write("format!(");
if let Some(Expr::StrLit(v)) = args.get(1) {
self.visit_str_lit(buf, v);
buf.write(", ");
} else {
return Err("invalid expression type for fmt filter".into());
}
self._visit_args(buf, &args[0..1])?;
if args.len() > 2 {
return Err("only two arguments allowed to fmt filter".into());
}
buf.write(")");
Ok(())
}
// Force type coercion on first argument to `join` filter (see #39).
fn _visit_join_filter(
&mut self,
buf: &mut Buffer,
args: &[Expr<'_>],
) -> Result<(), CompileError> {
buf.write("::askama::filters::join((&");
for (i, arg) in args.iter().enumerate() {
if i > 0 {
buf.write(", &");
}
self.visit_expr(buf, arg)?;
if i == 0 {
buf.write(").into_iter()");
}
}
buf.write(")?");
Ok(())
}
fn _visit_args(&mut self, buf: &mut Buffer, args: &[Expr<'_>]) -> Result<(), CompileError> {
if args.is_empty() {
return Ok(());
}
for (i, arg) in args.iter().enumerate() {
if i > 0 {
buf.write(", ");
}
let borrow = !is_copyable(arg);
if borrow {
buf.write("&(");
}
match arg {
Expr::Call(left, _) if !matches!(left.as_ref(), Expr::Path(_)) => {
buf.writeln("{")?;
self.visit_expr(buf, arg)?;
buf.writeln("}")?;
}
_ => {
self.visit_expr(buf, arg)?;
}
}
if borrow {
buf.write(")");
}
}
Ok(())
}
fn visit_attr(
&mut self,
buf: &mut Buffer,
obj: &Expr<'_>,
attr: &str,
) -> Result<DisplayWrap, CompileError> {
if let Expr::Var(name) = *obj {
if name == "loop" {
if attr == "index" {
buf.write("(_loop_item.index + 1)");
return Ok(DisplayWrap::Unwrapped);
} else if attr == "index0" {
buf.write("_loop_item.index");
return Ok(DisplayWrap::Unwrapped);
} else if attr == "first" {
buf.write("_loop_item.first");
return Ok(DisplayWrap::Unwrapped);
} else if attr == "last" {
buf.write("_loop_item.last");
return Ok(DisplayWrap::Unwrapped);
} else {
return Err("unknown loop variable".into());
}
}
}
self.visit_expr(buf, obj)?;
buf.write(&format!(".{}", normalize_identifier(attr)));
Ok(DisplayWrap::Unwrapped)
}
fn visit_index(
&mut self,
buf: &mut Buffer,
obj: &Expr<'_>,
key: &Expr<'_>,
) -> Result<DisplayWrap, CompileError> {
buf.write("&");
self.visit_expr(buf, obj)?;
buf.write("[");
self.visit_expr(buf, key)?;
buf.write("]");
Ok(DisplayWrap::Unwrapped)
}
fn visit_call(
&mut self,
buf: &mut Buffer,
left: &Expr<'_>,
args: &[Expr<'_>],
) -> Result<DisplayWrap, CompileError> {
match left {
Expr::Attr(left, method) if **left == Expr::Var("loop") => match *method {
"cycle" => match args {
[arg] => {
if matches!(arg, Expr::Array(arr) if arr.is_empty()) {
return Err("loop.cycle(…) cannot use an empty array".into());
}
buf.write("({");
buf.write("let _cycle = &(");
self.visit_expr(buf, arg)?;
buf.writeln(");")?;
buf.writeln("let _len = _cycle.len();")?;
buf.writeln("if _len == 0 {")?;
buf.writeln("return ::core::result::Result::Err(::askama::Error::Fmt(::core::fmt::Error));")?;
buf.writeln("}")?;
buf.writeln("_cycle[_loop_item.index % _len]")?;
buf.writeln("})")?;
}
_ => return Err("loop.cycle(…) expects exactly one argument".into()),
},
s => return Err(format!("unknown loop method: {s:?}").into()),
},
left => {
match left {
Expr::Var(name) => match self.locals.resolve(name) {
Some(resolved) => buf.write(&resolved),
None => buf.write(&format!("(&self.{})", normalize_identifier(name))),
},
left => {
self.visit_expr(buf, left)?;
}
}
buf.write("(");
self._visit_args(buf, args)?;
buf.write(")");
}
}
Ok(DisplayWrap::Unwrapped)
}
fn visit_unary(
&mut self,
buf: &mut Buffer,
op: &str,
inner: &Expr<'_>,
) -> Result<DisplayWrap, CompileError> {
buf.write(op);
self.visit_expr(buf, inner)?;
Ok(DisplayWrap::Unwrapped)
}
fn visit_range(
&mut self,
buf: &mut Buffer,
op: &str,
left: Option<&Expr<'_>>,
right: Option<&Expr<'_>>,
) -> Result<DisplayWrap, CompileError> {
if let Some(left) = left {
self.visit_expr(buf, left)?;
}
buf.write(op);
if let Some(right) = right {
self.visit_expr(buf, right)?;
}
Ok(DisplayWrap::Unwrapped)
}
fn visit_binop(
&mut self,
buf: &mut Buffer,
op: &str,
left: &Expr<'_>,
right: &Expr<'_>,
) -> Result<DisplayWrap, CompileError> {
self.visit_expr(buf, left)?;
buf.write(&format!(" {op} "));
self.visit_expr(buf, right)?;
Ok(DisplayWrap::Unwrapped)
}
fn visit_group(
&mut self,
buf: &mut Buffer,
inner: &Expr<'_>,
) -> Result<DisplayWrap, CompileError> {
buf.write("(");
self.visit_expr(buf, inner)?;
buf.write(")");
Ok(DisplayWrap::Unwrapped)
}
fn visit_tuple(
&mut self,
buf: &mut Buffer,
exprs: &[Expr<'_>],
) -> Result<DisplayWrap, CompileError> {
buf.write("(");
for (index, expr) in exprs.iter().enumerate() {
if index > 0 {
buf.write(" ");
}
self.visit_expr(buf, expr)?;
buf.write(",");
}
buf.write(")");
Ok(DisplayWrap::Unwrapped)
}
fn visit_array(
&mut self,
buf: &mut Buffer,
elements: &[Expr<'_>],
) -> Result<DisplayWrap, CompileError> {
buf.write("[");
for (i, el) in elements.iter().enumerate() {
if i > 0 {
buf.write(", ");
}
self.visit_expr(buf, el)?;
}
buf.write("]");
Ok(DisplayWrap::Unwrapped)
}
fn visit_path(&mut self, buf: &mut Buffer, path: &[&str]) -> DisplayWrap {
for (i, part) in path.iter().enumerate() {
if i > 0 {
buf.write("::");
}
buf.write(part);
}
DisplayWrap::Unwrapped
}
fn visit_var(&mut self, buf: &mut Buffer, s: &str) -> DisplayWrap {
if s == "self" {
buf.write(s);
return DisplayWrap::Unwrapped;
}
buf.write(normalize_identifier(&self.locals.resolve_or_self(s)));
DisplayWrap::Unwrapped
}
fn visit_bool_lit(&mut self, buf: &mut Buffer, s: &str) -> DisplayWrap {
buf.write(s);
DisplayWrap::Unwrapped
}
fn visit_str_lit(&mut self, buf: &mut Buffer, s: &str) -> DisplayWrap {
buf.write(&format!("\"{s}\""));
DisplayWrap::Unwrapped
}
fn visit_char_lit(&mut self, buf: &mut Buffer, s: &str) -> DisplayWrap {
buf.write(&format!("'{s}'"));
DisplayWrap::Unwrapped
}
fn visit_num_lit(&mut self, buf: &mut Buffer, s: &str) -> DisplayWrap {
buf.write(s);
DisplayWrap::Unwrapped
}
fn visit_target(
&mut self,
buf: &mut Buffer,
initialized: bool,
first_level: bool,
target: &Target<'a>,
) {
match target {
Target::Name("_") => {
buf.write("_");
}
Target::Name(name) => {
let name = normalize_identifier(name);
match initialized {
true => self.locals.insert(name, LocalMeta::initialized()),
false => self.locals.insert_with_default(name),
}
buf.write(name);
}
Target::Tuple(path, targets) => {
buf.write(&path.join("::"));
buf.write("(");
for target in targets {
self.visit_target(buf, initialized, false, target);
buf.write(",");
}
buf.write(")");
}
Target::Struct(path, targets) => {
buf.write(&path.join("::"));
buf.write(" { ");
for (name, target) in targets {
buf.write(normalize_identifier(name));
buf.write(": ");
self.visit_target(buf, initialized, false, target);
buf.write(",");
}
buf.write(" }");
}
Target::Path(path) => {
self.visit_path(buf, path);
}
Target::StrLit(s) => {
if first_level {
buf.write("&");
}
self.visit_str_lit(buf, s);
}
Target::NumLit(s) => {
if first_level {
buf.write("&");
}
self.visit_num_lit(buf, s);
}
Target::CharLit(s) => {
if first_level {
buf.write("&");
}
self.visit_char_lit(buf, s);
}
Target::BoolLit(s) => {
if first_level {
buf.write("&");
}
buf.write(s);
}
}
}
/* Helper methods for dealing with whitespace nodes */
// Combines `flush_ws()` and `prepare_ws()` to handle both trailing whitespace from the
// preceding literal and leading whitespace from the succeeding literal.
fn handle_ws(&mut self, ws: Ws) {
self.flush_ws(ws);
self.prepare_ws(ws);
}
fn should_trim_ws(&self, ws: Option<Whitespace>) -> WhitespaceHandling {
match ws {
Some(Whitespace::Suppress) => WhitespaceHandling::Suppress,
Some(Whitespace::Preserve) => WhitespaceHandling::Preserve,
Some(Whitespace::Minimize) => WhitespaceHandling::Minimize,
None => self.whitespace,
}
}
// If the previous literal left some trailing whitespace in `next_ws` and the
// prefix whitespace suppressor from the given argument, flush that whitespace.
// In either case, `next_ws` is reset to `None` (no trailing whitespace).
fn flush_ws(&mut self, ws: Ws) {
if self.next_ws.is_none() {
return;
}
// If `whitespace` is set to `suppress`, we keep the whitespace characters only if there is
// a `+` character.
match self.should_trim_ws(ws.0) {
WhitespaceHandling::Preserve => {
let val = self.next_ws.unwrap();
if !val.is_empty() {
self.buf_writable.push(Writable::Lit(val));
}
}
WhitespaceHandling::Minimize => {
let val = self.next_ws.unwrap();
if !val.is_empty() {
self.buf_writable
.push(Writable::Lit(match val.contains('\n') {
true => "\n",
false => " ",
}));
}
}
WhitespaceHandling::Suppress => {}
}
self.next_ws = None;
}
// Sets `skip_ws` to match the suffix whitespace suppressor from the given
// argument, to determine whether to suppress leading whitespace from the
// next literal.
fn prepare_ws(&mut self, ws: Ws) {
self.skip_ws = self.should_trim_ws(ws.1);
}
}
struct Buffer {
// The buffer to generate the code into
buf: String,
// The current level of indentation (in spaces)
indent: u8,
// Whether the output buffer is currently at the start of a line
start: bool,
}
impl Buffer {
fn new(indent: u8) -> Self {
Self {
buf: String::new(),
indent,
start: true,
}
}
fn writeln(&mut self, s: &str) -> Result<(), CompileError> {
if s == "}" {
self.dedent()?;
}
if !s.is_empty() {
self.write(s);
}
self.buf.push('\n');
if s.ends_with('{') {
self.indent();
}
self.start = true;
Ok(())
}
fn write(&mut self, s: &str) {
if self.start {
for _ in 0..(self.indent * 4) {
self.buf.push(' ');
}
self.start = false;
}
self.buf.push_str(s);
}
fn indent(&mut self) {
self.indent += 1;
}
fn dedent(&mut self) -> Result<(), CompileError> {
if self.indent == 0 {
return Err("dedent() called while indentation == 0".into());
}
self.indent -= 1;
Ok(())
}
}
#[derive(Clone, Default)]
struct LocalMeta {
refs: Option<String>,
initialized: bool,
}
impl LocalMeta {
fn initialized() -> Self {
Self {
refs: None,
initialized: true,
}
}
fn with_ref(refs: String) -> Self {
Self {
refs: Some(refs),
initialized: true,
}
}
}
// type SetChain<'a, T> = MapChain<'a, T, ()>;
#[derive(Debug)]
struct MapChain<'a, K, V>
where
K: cmp::Eq + hash::Hash,
{
parent: Option<&'a MapChain<'a, K, V>>,
scopes: Vec<HashMap<K, V>>,
}
impl<'a, K: 'a, V: 'a> MapChain<'a, K, V>
where
K: cmp::Eq + hash::Hash,
{
fn new() -> MapChain<'a, K, V> {
MapChain {
parent: None,
scopes: vec![HashMap::new()],
}
}
fn with_parent<'p>(parent: &'p MapChain<'_, K, V>) -> MapChain<'p, K, V> {
MapChain {
parent: Some(parent),
scopes: vec![HashMap::new()],
}
}
/// Iterates the scopes in reverse and returns `Some(LocalMeta)`
/// from the first scope where `key` exists.
fn get(&self, key: &K) -> Option<&V> {
let mut scopes = self.scopes.iter().rev();
scopes
.find_map(|set| set.get(key))
.or_else(|| self.parent.and_then(|set| set.get(key)))
}
fn is_current_empty(&self) -> bool {
self.scopes.last().unwrap().is_empty()
}
fn insert(&mut self, key: K, val: V) {
self.scopes.last_mut().unwrap().insert(key, val);
// Note that if `insert` returns `Some` then it implies
// an identifier is reused. For e.g. `{% macro f(a, a) %}`
// and `{% let (a, a) = ... %}` then this results in a
// generated template, which when compiled fails with the
// compile error "identifier `a` used more than once".
}
fn insert_with_default(&mut self, key: K)
where
V: Default,
{
self.insert(key, V::default());
}
fn push(&mut self) {
self.scopes.push(HashMap::new());
}
fn pop(&mut self) {
self.scopes.pop().unwrap();
assert!(!self.scopes.is_empty());
}
}
impl MapChain<'_, &str, LocalMeta> {
fn resolve(&self, name: &str) -> Option<String> {
let name = normalize_identifier(name);
self.get(&name).map(|meta| match &meta.refs {
Some(expr) => expr.clone(),
None => name.to_string(),
})
}
fn resolve_or_self(&self, name: &str) -> String {
let name = normalize_identifier(name);
self.resolve(name).unwrap_or_else(|| format!("self.{name}"))
}
}
/// Returns `true` if enough assumptions can be made,
/// to determine that `self` is copyable.
fn is_copyable(expr: &Expr<'_>) -> bool {
is_copyable_within_op(expr, false)
}
fn is_copyable_within_op(expr: &Expr<'_>, within_op: bool) -> bool {
use Expr::*;
match expr {
BoolLit(_) | NumLit(_) | StrLit(_) | CharLit(_) => true,
Unary(.., expr) => is_copyable_within_op(expr, true),
BinOp(_, lhs, rhs) => is_copyable_within_op(lhs, true) && is_copyable_within_op(rhs, true),
Range(..) => true,
// The result of a call likely doesn't need to be borrowed,
// as in that case the call is more likely to return a
// reference in the first place then.
Call(..) | Path(..) => true,
// If the `expr` is within a `Unary` or `BinOp` then
// an assumption can be made that the operand is copy.
// If not, then the value is moved and adding `.clone()`
// will solve that issue. However, if the operand is
// implicitly borrowed, then it's likely not even possible
// to get the template to compile.
_ => within_op && is_attr_self(expr),
}
}
/// Returns `true` if this is an `Attr` where the `obj` is `"self"`.
pub(crate) fn is_attr_self(expr: &Expr<'_>) -> bool {
match expr {
Expr::Attr(obj, _) if matches!(obj.as_ref(), Expr::Var("self")) => true,
Expr::Attr(obj, _) if matches!(obj.as_ref(), Expr::Attr(..)) => is_attr_self(expr),
_ => false,
}
}
/// Returns `true` if the outcome of this expression may be used multiple times in the same
/// `write!()` call, without evaluating the expression again, i.e. the expression should be
/// side-effect free.
pub(crate) fn is_cacheable(expr: &Expr<'_>) -> bool {
match expr {
// Literals are the definition of pure:
Expr::BoolLit(_) => true,
Expr::NumLit(_) => true,
Expr::StrLit(_) => true,
Expr::CharLit(_) => true,
// fmt::Display should have no effects:
Expr::Var(_) => true,
Expr::Path(_) => true,
// Check recursively:
Expr::Array(args) => args.iter().all(is_cacheable),
Expr::Attr(lhs, _) => is_cacheable(lhs),
Expr::Index(lhs, rhs) => is_cacheable(lhs) && is_cacheable(rhs),
Expr::Filter(_, args) => args.iter().all(is_cacheable),
Expr::Unary(_, arg) => is_cacheable(arg),
Expr::BinOp(_, lhs, rhs) => is_cacheable(lhs) && is_cacheable(rhs),
Expr::Range(_, lhs, rhs) => {
lhs.as_ref().map_or(true, |v| is_cacheable(v))
&& rhs.as_ref().map_or(true, |v| is_cacheable(v))
}
Expr::Group(arg) => is_cacheable(arg),
Expr::Tuple(args) => args.iter().all(is_cacheable),
// We have too little information to tell if the expression is pure:
Expr::Call(_, _) => false,
Expr::RustMacro(_, _) => false,
Expr::Try(_) => false,
}
}
fn median(sizes: &mut [usize]) -> usize {
sizes.sort_unstable();
if sizes.len() % 2 == 1 {
sizes[sizes.len() / 2]
} else {
(sizes[sizes.len() / 2 - 1] + sizes[sizes.len() / 2]) / 2
}
}
#[derive(Clone, Copy, PartialEq)]
enum AstLevel {
Top,
Block,
Nested,
}
#[derive(Clone, Copy)]
enum DisplayWrap {
Wrapped,
Unwrapped,
}
#[derive(Debug)]
enum Writable<'a> {
Lit(&'a str),
Expr(&'a Expr<'a>),
}
// Identifiers to be replaced with raw identifiers, so as to avoid
// collisions between template syntax and Rust's syntax. In particular
// [Rust keywords](https://doc.rust-lang.org/reference/keywords.html)
// should be replaced, since they're not reserved words in Askama
// syntax but have a high probability of causing problems in the
// generated code.
//
// This list excludes the Rust keywords *self*, *Self*, and *super*
// because they are not allowed to be raw identifiers, and *loop*
// because it's used something like a keyword in the template
// language.
static USE_RAW: [(&str, &str); 47] = [
("as", "r#as"),
("break", "r#break"),
("const", "r#const"),
("continue", "r#continue"),
("crate", "r#crate"),
("else", "r#else"),
("enum", "r#enum"),
("extern", "r#extern"),
("false", "r#false"),
("fn", "r#fn"),
("for", "r#for"),
("if", "r#if"),
("impl", "r#impl"),
("in", "r#in"),
("let", "r#let"),
("match", "r#match"),
("mod", "r#mod"),
("move", "r#move"),
("mut", "r#mut"),
("pub", "r#pub"),
("ref", "r#ref"),
("return", "r#return"),
("static", "r#static"),
("struct", "r#struct"),
("trait", "r#trait"),
("true", "r#true"),
("type", "r#type"),
("unsafe", "r#unsafe"),
("use", "r#use"),
("where", "r#where"),
("while", "r#while"),
("async", "r#async"),
("await", "r#await"),
("dyn", "r#dyn"),
("abstract", "r#abstract"),
("become", "r#become"),
("box", "r#box"),
("do", "r#do"),
("final", "r#final"),
("macro", "r#macro"),
("override", "r#override"),
("priv", "r#priv"),
("typeof", "r#typeof"),
("unsized", "r#unsized"),
("virtual", "r#virtual"),
("yield", "r#yield"),
("try", "r#try"),
];
fn normalize_identifier(ident: &str) -> &str {
if let Some(word) = USE_RAW.iter().find(|x| x.0 == ident) {
word.1
} else {
ident
}
}